
Chapter 9 - Refactoring

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Software Maintenance

● Preventive: bugs not yet reported

● Corrective: bugs reported by users

● Adaptive: customizations, new PL/OS versions, etc

● Evolutionary: new features

● Refactoring: code or design improvements

2

Refactoring
● Code transformations that improve maintainability without

affecting external behavior

3

Idea has become quite popular ...

4

201820001999

Catalog of Refactorings

● Extract Method

● Inline Method

● Move Method

● Extract Class

● Renaming

● etc

5

Method Extraction

6

Method Extraction

7

A real example ...

8

9

Before

10

After

Reasons for Method Extraction

● Reuse the extracted method

● Break a large method into smaller methods

● Remove code duplication

● Facilitate testing of the extracted method

● Allow subclasses to redefine the extracted method

● Allow the extracted method to be called recursively

● etc
11

Inline Methods (opposite of extraction)

12

13

Before

14

After

Move Method

15

16

Specific cases of Move Method
(along a class hierarchy)

17

18

Pull Up Method

19

Push Down Method

Extract Class

20

21

Renaming
(variable, parameter, method, class, exception, etc)

22

Giving good names to variables is one of the
hardest problems in programming!

23

Refactoring Practice

24

Refactorings & Tests

Developers avoid refactoring without good test suites.

Instead, they try to minimize the number of code changes for
each new feature or bug fix…

Which means that complexity accumulates and design
mistakes don’t get corrected.

-- John Ousterhout

25

When to refactor?

1. Opportunistic Refactorings

2. Planned Refactorings

26

Opportunistic Refactorings

● Performed in the midst of another task

● Most common type of refactoring

27

Planned (or Scheduled) Refactorings

● Correction of a complex design problem

● Sessions just for performing refactorings

28

Automated Refactorings
(performed with the help of an IDE)

29

30

31

Another Example: Remove Dead Code

● Code that is no longer being used

● More common than we think…

32

Case Study: Meta/Facebook

● Internal tool to remove dead code

33https://engineering.fb.com/2023/10/24/data-infrastructure/automating-dead-code-cleanup/

Usage Stats

● Tool was used to analyze hundreds of MLOC

● In 5 years, it helped to delete +100 MLOC, via 370K PR

34

Original sentence from the article (since the numbers above are very high):

SCARF has grown to analyze hundreds of millions of lines of code; and five years on, it has

automatically deleted more than 100 million lines of code in over 370,000 change requests.

Exercises

35

1. What is the relationship between the following sentence and
the practice of refactoring?

36

“For each desired change, make the change easy (warning:
this may be hard), then make the easy change.”

-- Kent Beck

2. Give the names of refactorings A and B that, if executed in
sequence, do not change the system’s code.

Thus, refactoring B undoes the transformations made by A.

37

3. Normally, the application of a refactoring depends on
certain preconditions. For example:

(a) When is it not possible to rename a local variable named
“a” to “b”?

(b) When is it not possible to move a method “f” from class A
to class B?

38

4. (a) What code transformation was performed in this Java
program? (b) Is it a refactoring? Justify.

39

class A {
 void f(){ print("hi");}
}

class B extends A {
 ...
}

class C {
 void f(){ print("hello");}
}

main() {
 B b = new B();
 b.f();
}

class A {
 void f(){ print("hi");}
}

class B extends A {
 void f(){ print("hello");}
}

class C {
 ...
}

main() {
 B b = new B();
 b.f();
}

5. (a) What code transformation was performed in this Java
program? (b) Is it a refactoring? Justify.

40

package package1;

public class A {

 void n() { (new B()).m("abc");
}

package package1;

public class B {

 public void m(Object o) {…}

 void m(String s) {…}

}

package package1;

public class A {

 void n() { (new B()).m("abc");
}

package package2;

public class B {

 public void m(Object o) {…}

 void m(String s) {…}

}

package1/A.java package1/A.java

package1/B.java package2/B.java

6. Is a change made to improve the performance of a system
a refactoring?

41

Exercise on software design, testability,
and refactoring

First, study the following code

42

43

import static javax.swing.JOptionPane.showMessageDialog;

class Dashboard {
 private Stock stock;

 public Dashboard(Stock stock) {
 this.stock = stock;
 }

 public void alert() {
 showMessageDialog(null, "New price " + stock.getName() + " " +
 stock.getPrice());
 }
}

44

class Stock {
 private String name;
 private float price;
 private Dashboard dashboard;

 public Stock(String name, float price) {
 this.name = name;
 this.price = price;
 }

 public void setDashboard(Dashboard dashboard) {
 this.dashboard = dashboard;
 }

 public String getName() {
 return this.name;
 }

 public float getPrice() {
 return this.price;
 }

45

// Continuation of the Stock class

 public void updatePrice(float price) {
 this.price = price;
 dashboard.alert();
 }

}

public class Main {
 public static void main(String[] args) {
 Stock stock = new Stock("PETR", 40);
 Dashboard dashboard = new Dashboard(stock);
 stock.setDashboard(dashboard);
 stock.updatePrice(50);
 }
}

● In the previous code, there is a circular
dependency between Dashboard and Stock

● Circular dependencies are indicators of
design and testability issues

● For example, why is it difficult to write a unit
test for the updatePrice() method?

46

1. Refactor the code to remove the circular dependency
between the classes.

2. Why is it now easier to write a unit test for updatePrice()?

47

Exercises

Answer

48

49

interface StockObserver {
 public void alert();
}

class Dashboard implements StockObserver {
 ...
 public void alert() {
 showMessageDialog(null, ...);
 }
}

class Stock { ...
 private StockObserver observer;

 public void setObserver(StockObserver observer)
{
 this.observer = observer;
 }
 ...
 public void updatePrice(float price) {
 this.price = price;
 observer.alert();
 }
}

50

public class Main {
 public static void main(String[] args) {
 Stock stock = new Stock("PETR", 40);
 Dashboard dashboard = new Dashboard(stock);
 stock.setObserver(dashboard);
 stock.updatePrice(50);
 }
}

51

Summarizing

Code Smells

52

Code (or Bad) Smells

● Indicators of low-quality code

● Code that is hard to maintain, understand, modify or test

● Therefore, candidate for refactoring

53

Catalog of Code Smells

● Duplicated Code
● Long Methods
● Large Classes
● Feature Envy
● Long Parameter List
● Global Variables

54

● Primitive Obsession
● Mutable Objects
● Data Classes
● Comments

Duplicated Code

55

Duplicated Code

● Makes maintenance more difficult

● Therefore, candidate for refactoring

56

57

Aiko Yamashita, Leon Moonen. Do
developers care about code smells? An
exploratory survey. WCRE 2013.

Duplicated Code ⇒ Clones

58

Clone Type 1 (comments and spaces)

59

Original code

Clone Type 2 (type 1 + different names)

60

Original code

Clone Type 3 (type 2 + changes in commands)

61

Original code

Clone Type 4 (equivalent algorithms)

62

Original code

Don't DRY Your Code Prematurely

63

https://testing.googleblog.com/2024/05/dont-dry-your-code-prematurely.html

DRY = Don’t Repeat Yourself

https://testing.googleblog.com/2024/05/dont-dry-your-code-prematurely.html

While functions may look the same, they may also
serve different requirements that evolve differently

over time.

64

Don't DRY Your Code Prematurely

65

Repetitive but allows for clear, entity-specific
logic and future changes.

def set_task_deadline(task_deadline):
 if task_deadline <= datetime.now():
 raise ValueError(“Date must be in the future”)

def set_payment_deadline(payment_deadline):
 if payment_deadline <= datetime.now():
 raise ValueError(“Date must be in the future”)

set_task_deadline(datetime(2024, 3, 12))
set_payment_deadline(datetime(2024, 3, 18))

✅
✅

Don't DRY Your Code Prematurely

66

Premature DRY abstraction assuming uniform rules,
limiting entity-specific changes.

class DeadlineSetter:
 def __init__(self, entity_type):
 self.entity_type = entity_type

 def set_deadline(self, deadline):
 if deadline <= datetime.now():
 raise ValueError(“Date must be in the future”)

task = DeadlineSetter(“task”)
task.set_deadline(datetime(2024, 3, 12))

payment = DeadlineSetter(“payment”)
payment.set_deadline(datetime(2024, 3, 18))

❌

Feature Envy

67

Feature Envy

● Method that "envies" data and methods of another class

● Uses more methods and data from another class

● Therefore, it is a candidate to be moved to it

68

69

Global Variables

70

Global Variables

● Poor coupling: makes understanding a method more difficult

71

To understand what f returns, we need to know the value of g
This value may vary between calls to f

Primitive Obsession

72

Primitive Obsession
● Zip Code, Currency, Date, Time, Color, Email, etc should

not be primitive types

● But rather have their own type with methods

● For example, methods for validation

73

Mutable Objects

74

Mutable vs Immutable Objects

● Mutable: state can change

● Immutable: once created, state does not change

75

Exercise: (a) What will be printed by the following Java
program? Justify. (b) Are Strings in Java immutable or not?

76

class Main {
 public static void main(String[] args) {
 String s1 = "Hello";
 String s2 = s1.toUpperCase();
 System.out.println(s1);
 System.out.println(s2);
 }
}

77

#include <iostream>
#include <string>

int main() {
 std::string s = "ball";
 s[0] = 'c';
 std::cout << s;
}

Exercise: (a) What will be printed by the following C++
program? (b) Are Strings in C++ immutable or not?

Why are immutable objects "good"?

● They give more "security" to the object creator

○ You can pass the object to other methods and be sure
that they will not change its state

● They are not subject to concurrency issues

○ No need for synchronizations, locks, mutex, etc

78

How to interpret this code smell

● Whenever possible:

○ Implement immutable objects

○ Especially, simple objects (ZIP, Date, Time, etc)

● On the other hand:

○ In imperative languages it is natural to have a number
of mutable objects

79

Comments

80

Don't comment bad code, rewrite it
-- B. Kerninghan & P. J. Plauger

81

82

83

"Noise" Comments (add nothing ...)

84

Example #1

85

// this function sends an email
void sendEmail() {
 ...
}

// this class holds data for an employee
public class Employee {
 ...
}

Example #2

86

Comments just repeat what is
already clear in the code

Source: A Philosophy of Software Design (chapter 13)

Certainly, not every comment is a code smell

87

When is it useful to comment?
● Complex code

88

// format matched kk:mm:ss EEE, MMM dd, yyy
Pattern timePattern = Pattern.compile("\\d*:\\d*:\\d* \\w*, \\w*, \\d*, \\d*");

When is it useful to comment?

89

● API Documentation

/**
 * Registers the text to display in a tool tip. The text
 * displays when the cursor lingers over the component.
 *
 * @param text the string to display. If the text is null,
 * the tool tip is turned off for this component.
 */
public void setToolTipText(String text) {

Before wrapping up: Technical Debt

90

Technical Debt
● Metaphor to explain the importance of SE practices

● Proposed by Ward Cunningham (1992)

● Non-optimal design solutions that make maintenance and
evolution difficult

91

Examples of Technical Debt
● Lack of tests

● Lack of compliance with architectural patterns

● High coupling and low cohesion

● Code smells

● Lack of documentation

● Code that does not follow predefined layout

● etc
92

Exercises

93

1. Consider the following Price class. One advantage is that it may
have a method (not shown) to convert the value to other currencies.
(a) Why are objects of this class mutable? (b) Reimplement the class
so that its objects are immutable.

94

class Price {
 ...
 private double value = 0.0;

 void increment(double amount) {
 this.value+= amount;
 }
 ...
}

final class Price { // final: forbids subclasses
 ...
 private final double value; // initialized once
 // (usually, in the constructor)

 public Price(double value) {
 this.value = value;
 }

 Price increment(double amount) {
 return new Price(this.value + amount);
 }
 ...
}

95

Answer in Java

public record Price(double value) {

 public Price increment(double amount) {
 return new Price(value + amount);
 }

}

96

Answer in Java, using records

● Records: simple and compact syntax for implementing
immutable objects, available from Java 14

2. In the next three slides, we show the code of a function from an
open-source system called FitNesse, which is also used in one of
the examples from the Clean Code book.

(a) What code smell exists in this function?

(b) What is the main refactoring that eliminates this smell?

Note: if you prefer, the function's code is here.

97

https://engsoftmoderna.info/artigos/exemplo-funcao-revisao-codigo.txt

98

public static String testableHtml(
 PageData pageData,
 boolean includeSuiteSetup
) throws Exception {
 WikiPage wikiPage = pageData.getWikiPage();
 StringBuffer buffer = new StringBuffer();
 if (pageData.hasAttribute("Test")) {
 if (includeSuiteSetup) {
 WikiPage suiteSetup = PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_SETUP_NAME, wikiPage
);
 if (suiteSetup != null) {
 WikiPagePath pagePath =
 suiteSetup.getPageCrawler().getFullPath(suiteSetup);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -setup .")
 .append(pagePathName)
 .append("\n");
 }
 }

99

 WikiPage setup = PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
 if (setup != null) {
 WikiPagePath setupPath = wikiPage.getPageCrawler().getFullPath(setup);
 String setupPathName = PathParser.render(setupPath);
 buffer.append("!include -setup .")
 .append(setupPathName)
 .append("\n");
 }
 }
 buffer.append(pageData.getContent());
 if (pageData.hasAttribute("Test")) {
 WikiPage teardown = PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
 if (teardown != null) {
 WikiPagePath tearDownPath =
 wikiPage.getPageCrawler().getFullPath(teardown);
 String tearDownPathName = PathParser.render(tearDownPath);
 buffer.append("!include -teardown .")
 .append(tearDownPathName)
 .append("\n");
 }

100

 if (includeSuiteSetup) {
 WikiPage suiteTeardown = PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_TEARDOWN_NAME,
 wikiPage
);
 if (suiteTeardown != null) {
 WikiPagePath pagePath =
 suiteTeardown.getPageCrawler().getFullPath(suiteTeardown);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -teardown .")
 .append(pagePathName)
 .append("\n");
 }
 }
 }
 pageData.setContent(buffer.toString());
 return pageData.getHtml();

}

End

101

