
Chapter 9 - Refactoring

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Software Maintenance

● Preventive: bugs not yet reported

● Corrective: bugs reported by users

● Adaptive: customizations, new PL/OS versions, etc

● Evolutionary: new features

● Refactoring: code or design improvements

2

Refactoring
● Code transformations that improve maintainability without

affecting external behavior

3

Refactoring has become quite popular ...

4

201820001999

Catalog of Refactorings

● Extract Method

● Inline Method

● Move Method

● Extract Class

● Renaming

● etc

5

Method Extraction

6

Method Extraction

7

A real example ...

8

9

Reasons for Method Extraction

● Enable reuse of the extracted method

● Decompose large methods into smaller, focused ones

● Eliminate code duplication

● Improve testing by isolating functionality

● Support method overriding in subclasses

● Enable recursive implementations

● etc
10

Inline Method (opposite of extraction)

11

12

Move Method

13

14

Moving Methods Along Class Hierarchies

15

16

Pull Up Method

17

Push Down Method

Extract Class

18

19

Renaming
(variable, parameter, method, class, exception, etc)

20

Choosing meaningful names for variables is
one of the hardest problems in programming!

21

Refactoring Practice

22

Refactorings & Tests

Developers avoid refactoring without good test suites.

Instead, they try to minimize the number of code changes for
each new feature or bug fix…

Which means that complexity accumulates and design
mistakes don’t get corrected.

-- John Ousterhout

23

When should we refactor?

1. Opportunistic Refactorings

2. Planned Refactorings

24

Opportunistic Refactorings

● Occurs in the midst of another development task

● The most common type of refactoring in practice

25

Planned (or Scheduled) Refactorings

● Addresses correction of complex design problems

● Dedicated sessions focused solely on refactorings

26

IDE-Supported Refactoring

27

28

29

Another Example: Remove Dead Code

● Code that is no longer being used is more common than we
think…

30

Case Study: Meta/Facebook

● Meta has an internal tool to remove dead code

31https://engineering.fb.com/2023/10/24/data-infrastructure/automating-dead-code-cleanup/

Usage Stats

● Tool was used to analyze hundreds of MLOC

● In 5 years, it helped to delete more than 100 MLOC, via
370K PR

32

"SCARF has grown to analyze hundreds of millions of lines of code; and five years on, it has

automatically deleted more than 100 million lines of code in over 370,000 change requests."

Exercises

33

1. What is the relationship between the following sentence and
the practice of refactoring?

34

“For each desired change, make the change easy (warning:
this may be hard), then make the easy change.”

-- Kent Beck

2. Give the names of refactorings A and B that, if executed in
sequence, would not change the system's code.

These refactorings should be chosen so that refactoring B
undoes the transformations made by A.

35

3. Normally, the application of a refactoring depends on
certain preconditions. For example:

(a) When is it not possible to rename a local variable "a" to
"b"?

(b) When is it not possible to move a method "f" from class A
to class B?

36

4. (a) What code transformation was performed in this Java
program? (b) Is it a refactoring? Justify.

37

class A {
 void f(){ print("hi");}
}

class B extends A {
 ...
}

class C {
 void f(){ print("hello");}
}

main() {
 B b = new B();
 b.f();
}

class A {
 void f(){ print("hi");}
}

class B extends A {
 void f(){ print("hello");}
}

class C {
 ...
}

main() {
 B b = new B();
 b.f();
}

5. (a) What code transformation was performed in this Java
program? (b) Is it a refactoring? Justify.

38

package package1;

public class A {

 void n() { (new B()).m("abc");
}

package package1;

public class B {

 public void m(Object o) {…}

 void m(String s) {…}

}

package package1;

public class A {

 void n() { (new B()).m("abc");
}

package package2;

public class B {

 public void m(Object o) {…}

 void m(String s) {…}

}

package1/A.java package1/A.java

package1/B.java package2/B.java

6. Is a change made to improve the performance of a system
a refactoring?

39

Exercise: Software Design, Testability, and
Refactoring

First, study the following code

40

41

import static javax.swing.JOptionPane.showMessageDialog;

class Dashboard {
 private Stock stock;

 public Dashboard(Stock stock) {
 this.stock = stock;
 }

 public void alert() {
 showMessageDialog(null, "New price for " + stock.getName() + " " +
 stock.getPrice());
 }
}

42

class Stock {
 private String name;
 private double price;
 private Dashboard dashboard;

 public Stock(String name, double price) {
 this.name = name;
 this.price = price;
 }

 public void setDashboard(Dashboard dashboard) {
 this.dashboard = dashboard;
 }

 public String getName() {
 return this.name;
 }

 public double getPrice() {
 return this.price;
 }

43

// Continuation of the Stock class

 public void updatePrice(double price) {
 this.price = price;
 dashboard.alert();
 }

}

public class Main {
 public static void main(String[] args) {
 Stock stock = new Stock("PETR", 40);
 Dashboard dashboard = new Dashboard(stock);
 stock.setDashboard(dashboard);
 stock.updatePrice(50);
 }
}

● In the previous code, there is a circular
dependency between Dashboard and Stock

● Circular dependencies are indicators of
design and testability issues

● For example, why is it difficult to write a unit
test for the Stock.updatePrice() method?

44

1. Refactor the code to remove the circular dependency
between the classes.

2. Why is it now easier to write a unit test for updatePrice()?

45

Exercises

Answer

46

47

interface StockObserver {
 public void alert();
}

class Dashboard implements StockObserver {
 ...
 public void alert() {
 showMessageDialog(null, ...);
 }
}

class Stock { ...
 private StockObserver observer;

 public void setObserver(StockObserver observer)
{
 this.observer = observer;
 }
 ...
 public void updatePrice(double price) {
 this.price = price;
 observer.alert();
 }
}

48

public class Main {
 public static void main(String[] args) {
 Stock stock = new Stock("PETR", 40);
 Dashboard dashboard = new Dashboard(stock);
 stock.setObserver(dashboard);
 stock.updatePrice(50);
 }
}

49

Summarizing

Code Smells

50

Code (or Bad) Smells

● Indicators of low-quality code

● Code that is hard to maintain, understand, modify or test

● Therefore, it is a candidate for refactoring

51

Catalog of Code Smells

● Duplicated Code
● Long Methods
● Large Classes
● Feature Envy
● Long Parameter List
● Global Variables

52

● Primitive Obsession
● Mutable Objects
● Data Classes
● Comments

Duplicated Code

53

Duplicated Code

● Makes maintenance more difficult

● Therefore, it is a candidate for refactoring

54

55

Aiko Yamashita, Leon Moonen. Do
developers care about code smells? An
exploratory survey. WCRE 2013.

Duplicated Code ⇒ Clones

56

Clone Type 1 (comments and spaces)

57

Original code

Clone Type 2 (type 1 + different names)

58

Original code

Clone Type 3 (type 2 + changes in commands)

59

Original code

Clone Type 4 (equivalent algorithms)

60

Original code

61

https://www.gitclear.com/ai_assistant_code_quality_2025_research

Why do you think the number of clones is
increasing?

https://www.gitclear.com/ai_assistant_code_quality_2025_research

Exercise: What is the type of the following
clones?

62

63

(a)

Source: https://arxiv.org/abs/2107.13614 (including next slides)

https://arxiv.org/abs/2107.13614

64

(b)

65

(c)

66

(d)

67
Source: https://dl.acm.org/doi/10.1145/3607181

(e)

Additional question: is it worth eliminating this clone?

https://dl.acm.org/doi/10.1145/3607181

Don't DRY Your Code Prematurely

68

https://testing.googleblog.com/2024/05/dont-dry-your-code-prematurely.html

DRY = Don’t Repeat Yourself

https://testing.googleblog.com/2024/05/dont-dry-your-code-prematurely.html

While functions may look the same, they may also
serve different requirements that evolve differently

over time.

69

"Tolerable" duplication ⇒ different entities

70

Repetitive but allows for clear, entity-specific
logic and future changes.

def set_task_deadline(task_deadline):
 if task_deadline <= datetime.now():
 raise ValueError(“Date must be in the future”)

def set_payment_deadline(payment_deadline):
 if payment_deadline <= datetime.now():
 raise ValueError(“Date must be in the future”)

✅

✅

Feature Envy

71

Feature Envy

● Method that "envies" data and methods of another class

● Uses more methods and data from another class

● Therefore, it is a candidate for moving to that class

72

73

Global Variables

74

Global Variables

● Poor coupling: global variables make understanding a
method more difficult

75

To understand what f returns, we need to know the value of g
This value may vary between calls to f

Primitive Obsession

76

Primitive Obsession
● Using primitive types for zip code, currency, date, time,

color, email, etc

● These values should have their own type with methods

● For example, methods for validation

77

Mutable Objects

78

Mutable vs Immutable Objects

● Mutable: state can change

● Immutable: an object whose state does not change after
creation

79

Exercise: (a) What will be printed by the following Java
program? Justify. (b) Are Strings in Java immutable or not?

80

class Main {
 public static void main(String[] args) {
 String s1 = "Hello";
 String s2 = s1.toUpperCase();
 System.out.println(s1);
 System.out.println(s2);
 }
}

81

#include <iostream>
#include <string>

int main() {
 std::string s = "ball";
 s[0] = 'c';
 std::cout << s;
}

Exercise: (a) What will be printed by the following C++
program? (b) Are Strings in C++ immutable or not?

Why are immutable objects "good"?

● They provide more "security" to the object creator

○ You can pass the object to other methods and be sure
that they will not change its state

● They are not subject to race conditions or other
concurrency issues

○ No need for synchronizations, locks, mutex, etc

82

How to interpret this code smell

● Whenever possible:

○ Create immutable objects

○ Especially, for simple objects (ZIP, Date, Time, etc)

● On the other hand, in imperative languages it is natural to
have some mutable objects

83

Comments

84

Don't comment bad code, rewrite it

-- B. Kerninghan & P. J. Plauger

85

86

87

"Noise" Comments (add nothing ...)

88

Example #1

89

// this function sends an email
void sendEmail() {
 ...
}

// this class holds data for an employee
public class Employee {
 ...
}

Example #2

90

Comments that merely repeat
what is already clear in the
code

Source: A Philosophy of Software Design (chapter 13)

However, not every comment is a code smell

91

/**
* Returns a string that is a substring of this string. The
* substring begins at the specified {@code beginIndex} and
* extends to the character at index {@code endIndex - 1}.
* Thus the length of the substring is {@code endIndex-beginIndex}.
* <p>
* Examples:
* <blockquote><pre>
* "hamburger".substring(4, 8) returns "urge"
* "smiles".substring(1, 5) returns "mile"
* </pre></blockquote>
*
* @param beginIndex the beginning index, inclusive.
* @param endIndex the ending index, exclusive.
* @return the specified substring.
* @throws IndexOutOfBoundsException if the
* {@code beginIndex} is negative, or
* {@code endIndex} is larger than the length of
* this {@code String} object, or
* {@code beginIndex} is larger than
* {@code endIndex}.
*/
public String substring(int beginIndex, int endIndex) { ... }

> javadoc -d docs String.java

93

Same example, now in Python
(using docstrings)

96

def substring(s: str, begin_index: int, end_index: int) -> str:

 """

 Returns a string that is a substring of the input string. The

 substring begins at the specified `begin_index` and

 extends to the character at index `end_index - 1`.

 Thus the length of the substring is `end_index - begin_index`.

 Examples:

 substring("hamburger", 4, 8) returns "urge"

 substring("smiles", 1, 5) returns "mile"

 Parameters:

 s (str): The input string.

 begin_index (int): The beginning index, inclusive.

 end_index (int): The ending index, exclusive.

 Returns:

 str: The specified substring.

 Raises:

 IndexError: If `begin_index` is negative, or

 `end_index` is larger than the length of the string, or

 `begin_index` is larger than `end_index`.

 """

97

Docstrings:
documentation strings
after the definition of
functions, classes, or
modules. Thus, they
are not comments.

98

Another example: documenting inherently complex
code

99

// format matched kk:mm:ss EEE, MMM dd, yyy
Pattern timePattern = Pattern.compile("\\d*:\\d*:\\d* \\w*, \\w*, \\d*, \\d*");

Final Topic: Technical Debt

100

Technical Debt
● A Metaphor to explain the importance of SE practices

● Proposed by Ward Cunningham (1992)

● Designates non-optimal design solutions that make
maintenance and evolution difficult

101

Examples of Technical Debt
● Lack of tests

● Non-compliance with architectural patterns

● High coupling and low cohesion

● Code smells

● Lack of documentation

● Inconsistent code formatting

● etc
102

Exercises

103

1. Consider the following Price class. One advantage is that it may
have a method (not shown) to convert the value to other currencies.
(a) Why are objects of this class mutable? (b) Re-implement the
class so that its objects are immutable.

104

class Price {
 ...
 private double value = 0.0;

 public void increment(double amount) {
 this.value += amount;
 }
 ...
}

final class Price { // final: forbids subclasses
 ...
 private final double value; // initialized once
 // (usually, in the constructor)

 public Price(double value) {
 this.value = value;
 }

 public Price increment(double amount) {
 return new Price(this.value + amount);
 }
 ...
}

105

Answer in Java

public record Price(double value) {

 public Price increment(double amount) {
 return new Price(value + amount);
 }

}

106

Answer in Java, using records

Records: simple and compact syntax for implementing immutable
objects, available from Java 14

2. In the next three slides, we show the code of a function from the
open-source system called FitNesse, which is discussed in Robert
C. Martin's Clean Code book.

(a) What code smell exists in this function?

(b) What is the main refactoring that eliminates this smell?

Note: The complete function code is available at this link.

107

https://engsoftmoderna.info/artigos/exemplo-funcao-revisao-codigo.txt

108

public static String testableHtml(
 PageData pageData,
 boolean includeSuiteSetup
) throws Exception {
 WikiPage wikiPage = pageData.getWikiPage();
 StringBuffer buffer = new StringBuffer();
 if (pageData.hasAttribute("Test")) {
 if (includeSuiteSetup) {
 WikiPage suiteSetup = PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_SETUP_NAME, wikiPage
);
 if (suiteSetup != null) {
 WikiPagePath pagePath =
 suiteSetup.getPageCrawler().getFullPath(suiteSetup);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -setup .")
 .append(pagePathName)
 .append("\n");
 }
 }

109

 WikiPage setup = PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
 if (setup != null) {
 WikiPagePath setupPath = wikiPage.getPageCrawler().getFullPath(setup);
 String setupPathName = PathParser.render(setupPath);
 buffer.append("!include -setup .")
 .append(setupPathName)
 .append("\n");
 }
 }
 buffer.append(pageData.getContent());
 if (pageData.hasAttribute("Test")) {
 WikiPage teardown = PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
 if (teardown != null) {
 WikiPagePath tearDownPath =
 wikiPage.getPageCrawler().getFullPath(teardown);
 String tearDownPathName = PathParser.render(tearDownPath);
 buffer.append("!include -teardown .")
 .append(tearDownPathName)
 .append("\n");
 }

110

 if (includeSuiteSetup) {
 WikiPage suiteTeardown = PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_TEARDOWN_NAME,
 wikiPage
);
 if (suiteTeardown != null) {
 WikiPagePath pagePath =
 suiteTeardown.getPageCrawler().getFullPath(suiteTeardown);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -teardown .")
 .append(pagePathName)
 .append("\n");
 }
 }
 }
 pageData.setContent(buffer.toString());
 return pageData.getHtml();

}

End

111

