
Chapter 8 - Testing

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

2

public class Math {

 public static long factorial(int n) {
 if (n == 0 || n == 1) {
 return 1;
 } else {
 long result = 1;
 for (int i = 2; i <= n; i++) {
 result *= i;
 }
 return result;
 }
 }
}

3

public class Math {

 public static long factorial(int n) {
 if (n == 0 || n == 1) {
 return 1;
 } else {
 long result = 1;
 for (int i = 2; i <= n; i++) {
 result *= i;
 }
 return result;
 }
 }
}

What code is
missing here?

4

public class Math {

 public static long factorial(int n) {
 if (n == 0 || n == 1) {
 return 1;
 } else {
 long result = 1;
 for (int i = 2; i <= n; i++) {
 result *= i;
 }
 return result;
 }
 }
}

public class MathTest {

 @Test
 public void testFactorial() {
 assertEquals(1, Math.factorial(0));
 assertEquals(1, Math.factorial(1));
 assertEquals(120, Math.factorial(5));
 }
}

Unit Testing is strongly encouraged and widely practiced at
Google. All code used in production is expected to have unit
tests.

At Facebook, engineers conduct any unit tests for their newly
developed code.

Code without tests is bad code.

-- Michael Feathers

5

6

Stack Overflow
Developer Survey

2019

https://survey.stackoverflow.co/2019#development-practices

https://survey.stackoverflow.co/2019#development-practices

Recalling Chapter 1 (Introduction)

7

Software Testing

● Verify if a program produces an expected result when
executed with some test cases

● Tests can be:

○ Manual

○ Automated

8

Software testing can reveal the presence of bugs, but not
their absence.

9

goallimitation

Edsger W. Dijkstra

Defects, Bugs, and Failures

● Example of defect or bug:

● The correct formula is “area = pi * radius * radius”

● When it is executed, it will cause a failure, meaning an
incorrect result.

10

if (condition)
 area = pi * radius * radius * radius;

Verification vs Validation

● Verification: Are we building the product right?

○ According to the defined specification

● Validation: Are we building the right product?

○ The one that meets the customer needs

11

Testing & Agile Methods

● Tests are automated

● Written by the developer of the code under testing

12

Test Pyramid

13

Types of Automated Tests

14

Unit Integration End-to-End

Unit Tests
(our main subject of study)

15

Unit Tests

● Automated tests of small units of code (typically, classes)

16

First Example: unit test for a Stack class

17

18

Class Under Test

19

Class Under Test Test (which is also a class)

20

Test methods (without parameters,
usually start with test)

Fixture (context)

Calls the method under test

Assert command: checks if the
result is as expected; if not,
throws an exception

Anatomy of a Unit Test

AAA Pattern

21

@Test
public void testEmptyStack() {
 Stack<Integer> stack = new
Stack<Integer>();
 boolean empty = stack.isEmpty();
 assertTrue(empty);
}

Arrange

Act

Assert

22

Testing framework: xUnit

Tests passed!

23

Testing framework: xUnit

Tests passed!

A test failed!

More test methods

24

25

Setup method executed before any @Test
method

26

Expected value (3) and found value (size), in
this order

Message when the assert fails:
Expected 3 but found [value]

27

assert is not useful here; since it
wouldn't be reached

More concepts about testing

28

Benefits

● Detecting bugs

○ In the class under test C

○ In other classes (regressions)

● Documentation

29

FIRST Principles (good characteristics of unit tests)

● Fast

● Independent (execution order does not matter)

● Repeatable (deterministic, non-flaky, and non-erratic)

● Self-checking (green vs red)

● Timely (written as soon as possible)

30

Flaky Tests

● Non-deterministic tests: Sometimes they pass, sometimes
they fail

● Example:

31

Results of successive executions of the same test T in a program
that has not undergone any modifications:

Why are some tests flaky?

32

Concurrency
(65% of cases)

Source: An Empirical Analysis of Flaky Tests, FSE 2014.

And if the server takes more than 2 seconds to respond?

Exercises

33

1. If end-to-end tests check "what's most important" (i.e., the
entire system), why is it not recommended to implement only
such tests?

34

2. What will be printed
by the following test
methods?

35

class ExampleTest {
 int i = 10;

 @Test
 public void test1() {
 i++;
 println(i);
 }

 @Test
 public void test2() {
 i++;
 println(i);
 }
}

Number of asserts per test

● Most of the time, use a single assert / test

36

✅❌

But there are exceptions ...

✅

37

How many tests do I have to write?

38

Test Coverage

● Test coverage = (number of statements executed by the
tests) / (total number of statements)

39

100% coverage

40

41

yellow: only one branch is tested;
any “if” has two branches: T and F

red: command not covered by tests

What is the ideal test coverage?

● Varies from project to project, but doesn't need to be 100%

● At least 60%, according to industry authors

42

Example: Google

43

median = 78%

https://docs.google.com/presentation/d1god5/fDDd1aP6PwhPodOnAZSPpD80lqYDrHhuhyD7Tvg/edit#slide=id.g3f5c82004_99_135

https://docs.google.com/presentation/d/1god5fDDd1aP6PwhPodOnAZSPpD80lqYDrHhuhyD7Tvg/edit#slide=id.g3f5c82004_99_135

Exercises

44

1. For the following function, fill in the table with the statements and
branch coverage results.

45

Test Stm Brch

f(0,0)

f(1,1)

f(0,0) e
f(1,1)

void f(int x, int y) {
 if (x > 0) {
 x = 2 * x;
 if (y > 0) {
 y = 2 * y;
 }
 }
}

2. In a university, students receive score A if they have a grade
greater than or equal to 90. This function implements this
requirement:

46

(a) Does this implementation have a bug? If so, when does it result
in a failure?

(b) Suppose this function is tested with grades 85 and 95. What is
the statement coverage of this test? And the branch coverage?

boolean isScoreA(int grade) {
 if (grade > 90)
 return true;
 else return false;
}

3. Consider the following statement:

if a program has 100% statement coverage, it is bug-free.

Is this statement true or false? Justify.

4. Why is it usually not necessary to achieve 100% statement
coverage?

47

Testability

48

49

Example: Servlet

Difficult to test because it has
dependencies (parameters)
on the Java Servlets package

doGet(__,)

50

new HttpServletRequest(__,...)

new XYZ(__,...)

new XPTO(__,...)

Problem: calling doGet(...) is not straightforward…

...

Testability of doGet() is low

51

Solution: Extract the domain rule to
a separate, more easily testable
class

Mocks

52

Motivating Example

53

–

Method that searches for a book in a
remote service

Problem: Unit tests should be fast!

54

Solution: Mocks

● An object that emulates a real object, but is much simpler
than the original

55

56

Solution without mocks (slow test as it accesses a remote server)

implements BookRepository

57

Solution with a mock Only works with two books:
SOFTENG and NULLBOOK

Solution without mocks (slow test as it accesses a remote server)

58

Search for a single ISBN

59

the test uses the mock

Mock Frameworks

60

Example: Mockito

● Facilitates the implementation of mocks via a
domain-specific language

● Eliminates the need for manual mock implementation

61

62

Creates a mock

Programs the behavior of the
mock

Manual Mock
class MockBookRepository
 implements BookRepository {

 public String search(int isbn) {
 if (isbn == 1234)
 return BookConst.SOFTENG;
 return BookConst.NULLBOOK;
 }
}

63

@BeforeEach
public void init() {
 BookRepository mockRepo = mock(BookRepository.class);
 when(mockRepo.search(anyInt())).thenReturn(BookConst.NULLBOOK);
 when(mockRepo.search(1234)).thenReturn(BookConst.SOFTENG);
 bs = new BookSearch(mockRepo);
}

@BeforeEach
public void init() {
 bs = new BookSearch(
 new
MockBookRepository());
}

Mockito

Test-Driven Development (TDD)

64

TDD

● One of the programming practices proposed by XP

● The idea is to write test T before class C

65

Benefits

● Prevents developers from forgetting to write tests

● Encourages writing code with testability in mind

● Improves the design of the code, as the developer
becomes the first user of their own code

● Coverage can reach up to 90%

66

TDD cycle

67

Example of TDD: Shopping Cart

68

Red

69

Still red, but at least
compiling

70

Temporary implementations

First Green

71

Just for a "small victory" ...
baby steps

Now, a real green

72

public class Book {
 private String title;
 private double price;
 private String isbn;

 public Book(String title, double price, String isbn)
{
 this.title = title;
 this.price = price;
 this.isbn = isbn;
 }
}

Yellow:

73

Can we refactor and improve the code?

Next Step

● Do we need more features?

● If yes, new TDD cycle (red-green-yellow)

74

Integration Tests

75

Integration Tests

● Test a feature or service

● Including external services (e.g., database)

76

77

Reminder…

Unit Integration End-to-End

Example of an Integration Test

Q&A Forum with a frontend (React) and a
backend (Express.js)

78

79

80

React Express.js

Integration Tests

81

beforeEach(() => {
 bd.reconfig('./db/qa-forum-test.db');

 // clears all tables
 bd.exec('delete from questions', []);
 bd.exec('delete from answers', []);
});

test('Testing empty database', () => {
 expect(model.list_questions().length).toBe(0);
});

82

test('Creating three questions', () => {
 model.add_question('1 + 1 = ?');
 model.add_question('2 + 2 = ?');
 model.add_question('3 + 3 = ?');
 const questions = model.list_questions();

 expect(questions.length).toBe(3);
 expect(questions[0].text).toBe('1 + 1 = ?');
 expect(questions[1].text).toBe(2 + 2 = ?');
 expect(questions[2].num_answers).toBe(0);
 expect(questions[1].id_question).toBe(questions[2].id_question-1);
});

Exercises

83

1. In June 2021, the following email was mistakenly sent to
thousands of HBO subscribers. What might have caused this email
to reach HBO's end users?

84

End-to-End Tests

85

End-to-End Tests

● Test the entire system via its external interface

● The test simulates a person interacting with the system
(filling in data, clicking on buttons, etc.)

● Also known as: system tests, frontend tests, web UI tests

86

87

E2E Test

Example of E2E Test

88

89

https://todomvc.com

https://todomvc.com

90

todo-input (input)

todos-list (container)

toggle-todo-checkbox

remove-todo-btn
(visible on hover)

filter-active-link filter-completed-linkfilter-all-link

91

<input data-cy="todo-input" ... placeholder="What needs to be done?"/>
...
<input data-cy="toggle-todo-checkbox" type="checkbox" {{checked}}>
...
<button data-cy="remove-todo-btn" class="destroy"></button>
...
<ul class="filters">
 <a data-cy="filter-all-link" href="#/" ...">All
 <a data-cy="filter-active-link" href="#/active">Active
 <a data-cy="filter-completed-link"
 href="#/completed">Completed

HTML & data-cy Selectors

92

it('Checking if the app is opening', () => {
 cy.visit('')
 })

93

it('Inserting a task', () => {
 cy.visit('');

 cy.get('[data-cy=todo-input]')
 .type('E2E Testing Practical Assignment{enter}');

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 1)
 .first()
 .should('have.text', 'E2E Testing Practical Assignment');
 });

94

it('Inserting and deleting a task', () => {
 cy.visit('');

 cy.get('[data-cy=todo-input]')
 .type('E2E Testing Practical Assignment{enter}');

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 1);

Continue…

No news so far for the previous test

95

 cy.get('[data-cy=todos-list] > li [data-cy=remove-todo-btn]')
 .invoke('show')
 .click();

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 0);
 });

96Continue…

it('Selecting completed and active tasks', () => {
 cy.visit('');

 cy.get('[data-cy=todo-input]')
 .type('E2E Testing Practical Assignment{enter}')
 .type('SE Exam{enter}');

 cy.get('[data-cy=todos-list] > li [data-cy=toggle-todo-checkbox]')
 .first()
 .click();

97
Continue…

 cy.get('[data-cy=filter-active-link')
 .click();

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 1)
 .first()
 .should('have.text', 'SE Exam');

98

 cy.get('[data-cy=filter-completed-link')
 .click();

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 1)
 .first()
 .should('have.text', 'E2E Testing Practical Assignment');

Continue…

99

 cy.get('[data-cy=filter-all-link')
 .click();

 cy.get('[data-cy=todos-list]')
 .children()
 .should('have.length', 2);
 });
});

Continuação…

100

https://docs.cypress.io/app/core-concepts/best-practices#Selecting-Elements

End

101

