SOFTWARE
ENGINEERING Chapter 7 - Architecture

A Modern Approach
Prof. Marco Tulio Valente

.
it
[/= [l 1§ https://softengbook.org

MARCO TULIO VALENTE

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
1 long as attribution is given to the author.

https://softengbook.org

Architecture is about the important stuff.
Whatever that is. — Ralph Johnson

Architecture = high-level design

e The focus shifts from small units (e.g., classes)
e Focusing instead on larger and more relevant units

e Such as packages, modules, subsystems, layers,
services, etc

ol eaa
B A
- 23
gt
OO ses 4

upoonmn
000 ORamn

Software Architecture

Software Design

Architectural Patterns = predefined architectures

e |ayered

e Model-View-Controller (MVC)
e Microservices

e Message-Oriented

e Publish/Subscribe

Linus-Tanenbaum Debate (1992)

Linux Minix

On the Importance of Software Architecture

https://www.oreilly.com/openbook/opensources/book/appa.html

https://www.oreilly.com/openbook/opensources/book/appa.html

The beginning of the debate: Tanenbaum's msg (1992)

From: ast@cs.vu.nl (Andy Tanenbaum)
Newsgroups: comp.OS.minix
Subject: LINUX is obsolete
Date: 29 Jan 92 12:12:50 GMT

I was in the U.S. for a couple of weeks, so I
LINUX (not that I would have said much had I
it is worth, I have a couple of comments now.

Tanenbaum's Argument
e Linux has a monolithic architecture:

o The entire OS is a single executable file

o Including process management, memory, files, etc
e Microkernel architecture is better:

o Kernel only contains essential services

o Other services run as independent processes

Linus's Reply

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Subject: Re: LINUX is obsolete

Date: 29 Jan 92 23:14:26 GMT

Organization: University of Helsinki

Well, with a subject like this, |[I'm afraid I'll have to reply.

10

Linus's Argument

e |n theory, microkernel architecture is theoretically superior
e However, other criteria have to be considered

e Most importantly, Linux is a reality and not just a promise

11

A New Response from Tanenbaum

I still maintain the point that designing a monolithic kernel in 1991 is
a fundamental error. Be thankful you are not my student. You would not
get a high grade for such a design :-)

12

Comment by Ken Thompson (Unix)

I would generally agree that microkernels are probably the wave of
the future. However, it is in my opinion easier to implement a
monolithic kernel. It is also easier for it to turn into a mess in

a hurry as it is modified.

13

Ken Thompson predicted the future: Fast forward 17
years later (2009) to see Torvalds' statement at a Linux
conference

Is Linux kernel getting bloated ? Linus
Torvalds says Yes!

September 24, 2009 Posted by Ravi

"We are definitely not the streamlined, small,
hyper-efficient kernel that | envisioned 15 years ago.
The kernel is huge and bloated... And whenever we
add a new feature, it only gets worse."

14

Key takeaway: the costs of architectural decisions
can take years to become apparent...

15

16

Layered Architecture

Layered Architecture

e A system is organized in a hierarchical way
e Layer n can only use services from layer n-1

e Widely used in networks and distributed systems

17

Advantages: divide and conquer

e Breaks down system complexity and facilitates:
o Understanding of the system
o Layer replacement (e.g., TCP to UDP)

o Layer reuse (e.g., multiple apps use TCP)

18

Variations

e [hree-Tier Architecture

e [wo-Tier Architecture

19

Three-Tier Architecture

e Common when downsizing enterprise apps in the 80s, 90s

e Downsizing: migration from mainframes to UNIX servers

20

Three-Tier Architecture

21

Client
(graphical
interface)

Client
(graphical
interface)

Aplication
(business rules)

Client
(graphical
interface)

Layer 1

Layer 2

—| Database
J A\
Y
Layer 3

Two-Tier Architecture

e Advantages of being simpler:
o Tier 1: client (user interface + business logic)
o Tier 2: database server

e Disadvantage: processing primarily occurs on the client

22

23

Model-View-Controller (MVC)

MV C Architecture

e Firstintroduced in the 1980s through Smalltalk

e Designed to implement Graphical User Interfaces (GUIs)

Collgctions—Unordg
Collections—Seque
Collections-Text
Collections-Arraye
Collections—Streal

"&ll dong. Clean some things up."
{1 to: 16) do: "close all the DA's | opened"

[:da |
refNum € refNums at: da.
(refNum ~= 0) if True:
[Mac closeDesk Acc: refNum]].

whichWindow telease.

heEvent release.

ranscript clear.

cheduledControllers restore. "restore the Smalltalk screen
tartlplist inspect

24

MVC divides classes into 3 groups

25

View: classes for implementing GUIs, including windows,
buttons, menus, scroll bars, etc.

Controller: classes that handle events produced by input
devices such as mouse and keyboard

Model: classes containing application logic and data

MVC = (View + Controllers) + Model

= Graphical Interface + Model

Graphical Interface

View -« ----- > Controllers

N Model o

26

27

~ w
-0
”
6
R
hours: 23
minutes: 55
}
Model

GUI #1

GUI #2

Traditional MVC apps

e MVC was originally designed for desktop applications

e Examples: Microsoft Word, Google Chrome, etc.

PR .:—' :: e WS [s aatnc. e Al A 20
v}-‘f WSt pfficriem i M i 1 Graphical Interface
> View ST —— > Controllers
R Model s

28

MVC Today

e MVC Web
e Single Page Applications

29

30

MVC Web

MVC Web

e MVC was adapted for the Web

e Popular frameworks include Ruby on Rails, Django, Spring,
PHP Laravel, etc.

31

32

Client
(browser)

Web app

Client
(browser)

View

Controller

Model

—>

Client
(browser)

Database

33

Client

»| Database

(browser)
Web app
—
Client .
(browser) —| View | Controller | Model
—r /
Client
(browser)

HTML, CSS, JavaScript pages
(what the user sees)

34

Client
(browser)

Web app

Client
(browser)

View

Controller

/

Model

»| Database

Client
(browser)

/

Handles input data and coordinates with

model to generate output pages

35

Client

»| Database

(browser)
Web app
Client
(b,o:,vge,) —| View | Controller | Model
Client
(browser)

Application logic (business rules) and
interface with the database

36

Client
(browser)

Web app

Client
(browser)

View

Controller

Model

»| Database

Client
(browser)

37

A simple Web-based MVC system

This example does not use any framework and has a
basic web interface for educational purposes

Controller

38

public class BookSearchController ({
public void start() {

get ("/", (req, res) -> {
res.redirect ("index.html");
return null;

}) s

Browser (index.html)

39

MVC Library

Book Search

Enter the author's name

l [Search]

Valid names: valente, fowler, and gof

You can also view the source code; just click on "Show Files".

Controller

4

public class BookSearchController ({
BookSearchService searchService;
BookPage bookPage;
public void start() {

get ("/search", (req, res) -> {

String author = reqg.queryParams ("author");
Book book = searchService.searchByAuthor (author);

return bookPage.displayBook (book.getTitle(),
book.getAuthor (),
book.getISBN()) ;

1) ;

Model

public class BookSearchService {

public Book searchByAuthor (String author) {

try (Connection con = DriverManager.getConnection(...)) {
String query = "SELECT * FROM books WHERE author = ?";
PreparedStatement stmt = con.prepareStatement (query) ;
stmt.setString (1, author);
ResultSet rs = stmt.executeQuery();
String isbn = rs.getString("isbn");
String title = rs.getString("title");
return new Book (isbn, author, title);

} catch (SQLException e) {
System.out.println(e.getMessage())
return null;

Controller

public class BookSearchController ({
BookSearchService searchService;
BookPage bookPage;
public void start() {

get ("/search", (req, res) -> {

String author = reqg.queryParams ("author");
Book book = searchService.searchByAuthor (author);

return bookPage.displayBook (book.getTitle (),
book.getAuthor (),
book.getISBN()) ;

1) ;

View

public class BookPage {

public String displayBook(String title, String author,

String res = "<h4> Book Details </h4>";

res += "";

res += "<1i> Title: " + title + " </1i>";
res += "<1i> Author: " + author + " </1i>";
res += "<1i> ISBN: " + isbn + " </1i>";

res += "";
return res;

String isbn)

{

43

Browser

44

Book Details

« Title: Refactoring
e Author: fowler
e ISBN: 2

Browser Controller Model View DB
GET /
P
index.html
‘. ... -
GET /search?author=fowler
searchByAuthor("fowler")
SQL query
ResultSet M
< ..
Book(2,"fowler","refactoring”)
<. ... -
displayBook("fowler","refactoring”,2)
HTML U
.‘ ...
HTML
4. ... i J
Browser Controller Model View DB

4o

46

MVC Frameworks remain relevant

Over the past two decades, Rails has taken countless companies
to millions of users and billions in market valuations.

) Basecamp SuHeY GitHub Al shopify
Yinstacart dnibbble, hulu zendesk
(Q) airbnb B square KIEKSTARTER HEROKU
coinbase e (&) cookpad “doximity

SOUNDCLOUD

ll] iINTERCOM @ Fleetio

https://rubyonrails.org (April 2024)

https://rubyonrails.org

47

Single Page Applications (SPASs)

48

Traditional Web Apps

Browser

Request

Response (HTML)

Request

Response (HTML)

Request

Response (HTML)

Server

Multiple Page Applications

Problem: less responsive
interfaces

Single Page Applications

e Run in the browser, but are more independent of the server
o Manipulate its own interface
o Store and manage local data
o Access the server only to fetch more data

e Example: GMail, Google Docs, Facebook, Figma, etc

e Implemented using JavaScript frameworks (React, Vue,
Svelte, etc)

49

50

W Vuejs

Simple Application using Vue.js

<h3>A Simple SPA</h3>

<div id="ui">
Temperature: {{ temperature }}
<p><button v-on:click="incTemperature">Increment
</button></p>

</div>

<script>
var model = new Vue({
el: '"#ui',
data: {
temperature: 60
Lo
methods: {
incTemperature: function() {
this.temperature++;

}
}
</script>

51

Interface (Web, HTML)

<h3>A Simple SPA</h3> ~\"\""\5‘55\5555‘5555‘55\5‘55\5

<div id="ui">
Temperature: {{ temperature }}
<p><button v—on:click="incTempe;;;;;;:;EEE?EmEnf~\~\§\
</button></p>

</div>

<script>
var model = new Vue({
el: '"#ui',
data: {
temperature: 60
Lo
methods: {
incTemperature: function() {
this.temperature++;

}
1
</script>

A Simple SPA

Temperature: 60

Increment

52

<h3>A Simple SPA</h3>

<div id="ui">
Temperature: {{ temperature }}
<p><button v-on:click="incTemperature">Increment
</button></p>

</div>

<script>
var model = new Vue({
el: '"#ui',
data: {
temperature: 60
Lo
methods: {
incTemperature: function() {
this.temperature++;

}
1
</script>

53

Model

<h3>A Simple SPA</h3>

<div id="ui">
Temperature: {{ temperature }}
<p><button v-on:click="incTemperature">Increment
</button></p>

</div>

<script>

var model = new Vue({
el: '"#ui',
data: {

Model

temperature: 60

+
methods: {

incTemperature: function() {
this.temperature++;

}
1
</script>

54

Data
Methods

<h3>A Simple SPA</h3>

<div| id="ui">

Temperature: {{ temperature }}
<p><button v-on:click="incTemperature">Increment
</buttgn></p>

</div>

<script
var model = new Vue({
el: '#ui',
data: {
temperature: 60
Lo
methods: {
incTemperature: function() {

this.temperature++;

}
}
</script>

55

<h3>A Simple SPA</h3>

<div id="ui">

Temperature: {{ temperature|}}

<p><button v-on:click="incTemperature">Increment
</button></p>

</div>

<script>
var model = new Vue({
el: '"#ui',

data: {
temperature: 60
Lo
methods: {
incTemperature: function() {
this.temperature++;
}
}
})
</script>

56

<h3>A Simple SPA</h3>

<div id="ui">
Temperature: {{ temperature }}

<p><button v-on:click='{incTemperature'>Increment

</button></p>

</div>

<script>
var model = new Vue({
el: '"#ui',
data: {
temperature;/ 60

Lo
methods:
incTemperature:| function() {
this.temperature++;
}
}
})
</script>

57

58

Traditional MVC
(Smalltalk): desktop
apps, pre-Web

aaaaaaaaaa

=
» lw | | B %

(IS I X || ¥

Summary

MVC Web: MVC
adaptation for the
Web (fullstack)

M rans
django
&

Laravel

SPA: MVC adaptation
for responsive apps
(frontend)

59

Microservices

Monoliths

e Monoliths: system exists as a single process at run-time

e Process: operating system process

Modules: compilation units
M1 M2 ws | | —

/ At runtime, a monolithic application executes

M4 M5 M6 in a single process

M7 M8 M9

60

Vertical vs Horizontal Scalability

Horizontal Scaling
(scaling out)

Vertical

Scaling
(scaling up)

https://www.section.io/blog/scaling-horizontally-vs-vertically/
61

Problem #1 with Monoliths: Scalability

e Horizontal scalability requires scaling the entire monolith

e This is inefficient when the bottleneck is in a single module

Servidor 1 Servidor 2
M1 M2 M3 M1 M2 M3
M4 M5 M6 M4 M5 M6

M7 M8 M9 M7 M8 M9

62

Problem #2 with Monoliths: Releases are slower

e The release process is slow, centralized, and bureaucratic
e Teams don't have autonomy to put modules into production
e Reason: changes can impact other teams' modules
e As a result:

o Releases must follow predefined dates

o Releases require several tests, sometimes manual, to
ensure correctness

63

_Adding new feature to the [{
— i R A bl FAREE WIF [

1 existing code &3 43

= ; g

Especially true in
a monolithic
codebase

64

65

Microservices

Microservices

e Services = Each module runs as an independent process

e Micro = small modules

66

Monolithic
Architecture

M1 M2 M3

M4 M5 M6

M7 M8 M9

67

Monolithic
Architecture

M1 M2 M3
M4 M5 M6
M7 M8 M9

68

Microservices-based
Architecture

M1 . ws | Microservice with
1 module
M4 M5 M6 Microservice with
2 modules

Microservice with
3 modules

M7 M8 M9

microservice = process (run-time, operating system)

Advantage #1: Scalability

e Each module can be scaled independently

Server 1

Server 2

M2

M3

M4

M5

M6

M7

M8

M9

69

M1

M1

Ml/

M1

M1

M1

M1 is the performance
bottleneck

Advantage #2: Flexibility for Releases

e The risk of interference between processes is smaller
e This is because each process has its own address space

e As aresult, teams have autonomy to put microservices into
production

70

Other Benefits of Microservices

e Microservices can use different technologies

e Partial failures (e.g., only one microservice may be offline)

Conway's Law (1968)

e Organizations design systems that mirror their own communication structure

=)

72

Micro Micro Micro
service service service
Micro Micro Micro
service service service
Micro Micro Micro
service service service
Micro Micro Micro
service service service

Who uses microservices?
e Large companies including Netflix, Amazon, Google, etc

Netflix runs on microservices Each node is a microservice

73

Example:
Uber (~2018)

74

https://eng.uber.com/microservice-architecture/

Database Patterns in Microservices

M1 M2

Y

e Sharing a single database between
microservices is not recommended

e This increases coupling between
microservices (M1 and M2),
violating their independence

75

Database Patterns in Microservices

M1 M2 " 2
;
=
e Sharing a single database between e Best practice: Each microservice has its DB.
microservices is not e This architecture eliminates data coupling between M1
recommended. and M2, allowing them to evolve independently.
e Thisincreases coupling between e Communication between microservices should occur via
microservices (M1 and M2), well-defined interfaces
26 violating their independence

Microservices introduce significant complexity

e Managing hundreds of processes
e [ncreased network latency

e Complex data consistency (distributed transactions)

77

Recommendation: start with monoliths

e C(Consider microservices only when:
o Monolith faces performance issues
o Release delays become significant

e Migration can be implemented gradually over time

78

79

Message-Oriented Architecture

Understanding Message-Oriented Architecture

Used in distributed applications

Clients communicate with servers indirectly

Communication occurs through an intermediary: a
message queue (or broker)

Client

msgn | ...

msg4

msg3

msg2

msgl

Server

Advantage #1: Fault Tolerance

e Messages are preserved when the server is down

e Assuming the message queue runs on a reliable server

Client p-| msgn| ... [msg4|msg3|msg2 | msgl > Server

Advantage #2: Scalability

e Servers can be added dynamically to handle increased load

e Message queues also prevent server overload by buffering
Incoming requests

Client —t—p| msgn| .. |[msg4|msg3|msg2 msgl%==> Server

Asynchronous Communication

e Enables loose coupling between clients and servers

e Space decoupling: clients and servers operate without
direct knowledge of each other

e Time decoupling: clients and servers can operate without
being simultaneously available

Client =——————t=—p-| msgn msg4 | msg3 | msg2 | msgl - = Server

84

Publish/Subscribe Architecture

Publish/Subscribe

e Architectural pattern that extends message queue
functionality

e Messages are called events

Publish/Subscribe

e Systems can (1) publish events; (2) subscribe to events; (3)
receive notifications about events

@D)

. publish() .

Publisher \ subscribe() Subscriber
publish() _

Publisher —— p» w Subscriber

Publish/Subscribe

publish()
/ w‘
Publisher Service Subscriber

/ notify()
Publisher publish() Subscriber

©

Example: Airline System

e Event: ticket sale

Sales System

Publish/Subscribe
Service

Mileage
System

Marketing
System

Accountig
System

Example: Airline System

Sales System

publish()

-

Publish/Subscribe
Service

notify()

notify()

notify()

Mileage
System

Marketing
System

Accountig
System

Example: Airline System

Mileage
notify() System
publish() :

Sales System - Pubhsh/Sgbscnbe _< notify() Msarkft.ng
Service ystem

notify() :r Accountig
System
Group communication:

1 publisher, n subscribers receive notifications

90

Other Architectural Patterns

Pipes and Filters
e Programs are called filters and they communicate via
pipes (which act as data buffers)

e Modular and flexible architecture; used by unix commands.
Example: 1s | grep csv | sort

SN

filter pipe

Client/Server

e Common in network services

e Examples: print service, file service, web service

<

N
-
/
b

<=

-
/
-
AN
-

Peer-to-Peer

e Every node is both client and server
e Consumer and provider of resources

e Example: file sharing using BitTorrent; Blockchain

94

Architectural Anti-Patterns

Big Ball of Mud

e A module can use any other module without restrictions

D

o

)

Example of Remodularization

e AntennaPod: open-source podcast player

e Android and Java

10:00 PUE4N

Subscriptions Cc

v ? LAGE ,
U NATION <
< %thoﬁjl?qqhkt

W Request f&

Comments

WA
- \//\///\ =

m‘f o
] L_FREAKSHOLI ETF

November, 2020 - Big Ball of Mud (with many circular dependencies)

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Developers' Comments

e "To test the database, for example, one normally wouldn’t
have to launch the full app. However, because the
database basically depended on everything else, most of
our tests required starting up a full Android device."

Developers' Comments

e "A particularly problematic aspect of the structure was that
there were many “utility” classes. These utility classes
caused many of the cycles visible in the structure.”

May, 2024

K e
:playback:base A ‘ :storage:database

‘:

:net:download:service-interface

:parser:feed

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Exercises

101

1. What is the likely architecture of the following systems? Provide a
brief justification.

a) Microsoft Excel (desktop version)
b) Banking App (mobile)

c) Twitter Web (front-end)

d) Google Slides (front-end)

e) Twitter/X (backend)

(
(
(
(
(
(f) Moodle

2. Answer on microservices:

(a) Why do microservices provide flexibility for teams to independently deploy
their code?

(b) Why is this independence less feasible with monoliths? Specifically, why is

it not recommended for a team to immediately deploy a modification made in
a monolith?

(c) Why is sharing a database among microservices not recommended?

3. Suppose a streaming company needs to implement a system to detect
the videos with quality problems (such as caption errors, audio problems,
and frozen images). The videos are stored in persistent storage. The
company is evaluating two architectures:

Architecture #1: Each detector is a microservice that receives the video
identifier as a parameter, loads it from storage, and executes a specific
quality detection algorithm on that video.

Architecture #2: The quality detectors are integrated in a monolith. The
video is loaded only once from storage to main memory and shared
across all detectors.

104

For a streaming company with millions of customers, which architecture is
more scalable? Provide justification.

Note: this exercise is based on a post from the Amazon Prime Video
engineering blog

prime wg)ieo l = Homepage Our Innova tion Ou

Scaling up the Prime Video
audio/video monitoring service and
reducing costs by 90%

March, 2023

105

End

106

