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Architecture is about the important stuff. 
Whatever that is.  – Ralph Johnson
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Architecture = high-level design
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● The focus shifts from small units (e.g., classes)

● Focusing instead on larger and more relevant units

● Such as packages, modules, subsystems, layers, 
services, etc
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Software Design Software Architecture



Architectural Patterns = predefined architectures
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● Layered

● Model-View-Controller (MVC) 

● Microservices 

● Message-Oriented

● Publish/Subscribe



Linus-Tanenbaum Debate (1992)
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Linux Minix



On the Importance of Software Architecture

https://www.oreilly.com/openbook/opensources/book/appa.html
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https://www.oreilly.com/openbook/opensources/book/appa.html


The beginning of the debate: Tanenbaum's msg (1992)
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Tanenbaum's Argument
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● Linux has a monolithic architecture:

○ The entire OS is a single executable file

○ Including process management, memory, files, etc

● Microkernel architecture is better:

○ Kernel only contains essential services

○ Other services run as independent processes



Linus's Reply
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Linus's Argument
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● In theory, microkernel architecture is theoretically superior

● However, other criteria have to be considered

● Most importantly, Linux is a reality and not just a promise



A New Response from Tanenbaum
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Comment by Ken Thompson (Unix)
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Ken Thompson predicted the future: Fast forward 17 
years later (2009) to see Torvalds' statement at a Linux 
conference
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"We are definitely not the streamlined, small, 
hyper-efficient kernel that I envisioned 15 years ago. 
The kernel is huge and bloated… And whenever we 
add a new feature, it only gets worse."



Key takeaway: the costs of architectural decisions 
can take years to become apparent…
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Layered Architecture
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Layered Architecture

17

● A system is organized in a hierarchical way

● Layer n can only use services from layer n-1

● Widely used in networks and distributed systems



Advantages: divide and conquer
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● Breaks down system complexity and facilitates:

○ Understanding of the system

○ Layer replacement (e.g., TCP to UDP)

○ Layer reuse (e.g., multiple apps use TCP)



Variations
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● Three-Tier Architecture

● Two-Tier Architecture



Three-Tier Architecture
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● Common when downsizing enterprise apps in the 80s, 90s

● Downsizing: migration from mainframes to UNIX servers



Three-Tier Architecture
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Two-Tier Architecture
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● Advantages of being simpler:

○ Tier 1: client (user interface + business logic)

○ Tier 2: database server

● Disadvantage: processing primarily occurs on the client



Model-View-Controller (MVC)
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MVC Architecture
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● First introduced in the 1980s through Smalltalk

● Designed to implement Graphical User Interfaces (GUIs)



MVC divides classes into 3 groups

25

● View: classes for implementing GUIs, including windows, 
buttons, menus, scroll bars, etc.

● Controller: classes that handle events produced by input 
devices such as mouse and keyboard

● Model: classes containing application logic and data



MVC = (View + Controllers) + Model

         = Graphical Interface + Model
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Model

GUI #1

GUI #2



Traditional MVC apps
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● MVC was originally designed for desktop applications

● Examples: Microsoft Word, Google Chrome, etc.



MVC Today
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● MVC Web

● Single Page Applications



MVC Web
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MVC Web
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● MVC was adapted for the Web

● Popular frameworks include Ruby on Rails, Django, Spring, 
PHP Laravel, etc.



32



33

HTML, CSS, JavaScript pages 
(what the user sees)
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Handles input data and coordinates with 
model to generate output pages
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Application logic (business rules) and 
interface with the database
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A simple Web-based MVC system
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This example does not use any framework and has a 
basic web interface for educational purposes



Controller
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public class BookSearchController {
  ...
  public void start() {
    ...
    get("/", (req, res) -> { 
      res.redirect("index.html");
      return null;
    });
    ...
  }
}



Browser (index.html)
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Controller
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public class BookSearchController {
  BookSearchService searchService;
  BookPage bookPage;
  ...
  public void start() {
    ...
    get("/search", (req, res) -> { 
      String author = req.queryParams("author");
      Book book = searchService.searchByAuthor(author);
      return bookPage.displayBook(book.getTitle(), 
                                  book.getAuthor(), 
                                  book.getISBN());
    });
    ...
  }
}



Model
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public class BookSearchService {

  public Book searchByAuthor(String author) {
    try (Connection con = DriverManager.getConnection(...)) {
      String query = "SELECT * FROM books WHERE author = ?"; 
      PreparedStatement stmt = con.prepareStatement(query);
      stmt.setString(1, author);
      ResultSet rs = stmt.executeQuery();
      String isbn = rs.getString("isbn");
      String title = rs.getString("title");
      return new Book(isbn, author, title);
    } catch (SQLException e) {
      System.out.println(e.getMessage());
      return null;
    } 
  }       
}



Controller
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public class BookSearchController {
  BookSearchService searchService;
  BookPage bookPage;
  ...
  public void start() {
    ...
    get("/search", (req, res) -> { 
      String author = req.queryParams("author");
      Book book = searchService.searchByAuthor(author);
      return bookPage.displayBook(book.getTitle(), 
                                  book.getAuthor(), 
                                  book.getISBN());
    });
    ...
  }
}



View
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public class BookPage {

  public String displayBook(String title, String author, String isbn) {
    String res = "<h4> Book Details </h4>";
    res += "<ul>";
    res += "<li> Title: " + title + " </li>";
    res += "<li> Author: " + author + " </li>";
    res += "<li> ISBN: " + isbn + " </li>";
    res += "</ul>";
    return res;
  }
}



Browser
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MVC Frameworks remain relevant

46 https://rubyonrails.org (April 2024)

https://rubyonrails.org


Single Page Applications (SPAs)
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Traditional Web Apps 
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Browser Server

Request

Response (HTML)

Request

Response (HTML)

Request

Response (HTML)

Problem: less responsive 
interfaces

Multiple Page Applications



Single Page Applications
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● Run in the browser, but are more independent of the server 

○ Manipulate its own interface 

○ Store and manage local data

○ Access the server only to fetch more data

● Example: GMail, Google Docs, Facebook, Figma, etc

● Implemented using JavaScript frameworks (React, Vue, 
Svelte, etc)



Simple Application using Vue.js
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Interface (Web, HTML)
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Model
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Data

Methods

Model
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Summary
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Traditional MVC 
(Smalltalk): desktop 

apps, pre-Web

MVC Web: MVC 
adaptation for the 

Web (fullstack)

SPA:  MVC adaptation 
for responsive apps 

(frontend)



Microservices
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Monoliths
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● Monoliths: system exists as a single process at run-time

● Process: operating system process

Modules: compilation units

At runtime, a monolithic application executes 
in a single process



Vertical vs Horizontal Scalability
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https://www.section.io/blog/scaling-horizontally-vs-vertically/



Problem #1 with Monoliths: Scalability
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● Horizontal scalability requires scaling the entire monolith

● This is inefficient when the bottleneck is in a single module



Problem #2 with Monoliths: Releases are slower
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● The release process is slow, centralized, and bureaucratic

● Teams don't have autonomy to put modules into production

● Reason: changes can impact other teams' modules

● As a result:

○ Releases must follow predefined dates

○ Releases require several tests, sometimes manual, to 
ensure correctness
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Especially true in 
a monolithic 
codebase



Microservices
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Microservices
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● Services ⇒ Each module runs as an independent process

● Micro ⇒ small modules 
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 Monolithic 
Architecture
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 Monolithic 
Architecture

Microservices-based 
Architecture

Microservice with 
1 module

Microservice with 
3 modules

microservice =  process (run-time, operating system)

Microservice with 
2 modules



Advantage #1: Scalability
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● Each module can be scaled independently

M1 is the performance 
bottleneck



Advantage #2: Flexibility for Releases
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● The risk of interference between processes is smaller

● This is because each process has its own address space

● As a result, teams have autonomy to put microservices into 
production



Other Benefits of Microservices

● Microservices can use different technologies 

● Partial failures (e.g., only one microservice may be offline)



Conway's Law (1968)
● Organizations design systems that mirror their own communication structure
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Who uses microservices?
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● Large companies including Netflix, Amazon, Google, etc

Each node is a microservice 



Example: 
Uber (~2018)

74 https://eng.uber.com/microservice-architecture/



Database Patterns in Microservices

● Sharing a single database between 
microservices is not recommended

● This increases coupling between 
microservices (M1 and M2), 
violating their independence
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Database Patterns in Microservices

● Sharing a single database between 
microservices is not 
recommended.

● This increases coupling between 
microservices (M1 and M2), 
violating their independence

● Best practice: Each microservice has its DB.
● This architecture eliminates data coupling between M1 

and M2, allowing them to evolve independently.
● Communication between microservices should occur via 

well-defined interfaces
76



Microservices introduce significant complexity

● Managing hundreds of processes

● Increased network latency

● Complex data consistency (distributed transactions)
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Recommendation: start with monoliths

● Consider microservices only when:

○ Monolith faces performance issues

○ Release delays become significant

● Migration can be implemented gradually over time
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Message-Oriented Architecture
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Understanding Message-Oriented Architecture

● Used in distributed applications

● Clients communicate with servers indirectly

● Communication occurs through an intermediary: a 
message queue (or broker)



Advantage #1: Fault Tolerance

● Messages are preserved when the server is down

● Assuming the message queue runs on a reliable server



Advantage #2: Scalability

● Servers can be added dynamically to handle increased load

● Message queues also prevent server overload by buffering 
incoming requests



Asynchronous Communication

● Enables loose coupling between clients and servers

● Space decoupling: clients and servers operate without 
direct knowledge of each other

● Time decoupling: clients and servers can operate without 
being simultaneously available



Publish/Subscribe Architecture
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Publish/Subscribe

● Architectural pattern that extends message queue 
functionality

● Messages are called events



Publish/Subscribe

● Systems can (1) publish events; (2) subscribe to events; (3) 
receive notifications about events

1 2

3



Example: Airline System

● Event: ticket sale 



Example: Airline System



Example: Airline System

Group communication: 
1 publisher, n subscribers receive notifications



Other Architectural Patterns
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Pipes and Filters

● Programs are called filters and they communicate via 
pipes (which act as data buffers)

● Modular and flexible architecture; used by unix commands. 
Example: ls | grep csv | sort

filter pipe



Client/Server

● Common in network services

● Examples: print service, file service, web service



Peer-to-Peer

● Every node is both client and server

● Consumer and provider of resources

● Example: file sharing using BitTorrent; Blockchain



Architectural Anti-Patterns
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Big Ball of Mud

● A module can use any other module without restrictions



Example of Remodularization

● AntennaPod: open-source podcast player

● Android and Java



November, 2020 - Big Ball of Mud (with many circular dependencies)

https://antennapod.org/blog/2024/05/modernizing-the-code-structure



Developers' Comments

● "To test the database, for example, one normally wouldn’t 
have to launch the full app. However, because the 
database basically depended on everything else, most of 
our tests required starting up a full Android device."



Developers' Comments

● "A particularly problematic aspect of the structure was that 
there were many “utility” classes. These utility classes 
caused many of the cycles visible in the structure."



May, 2024

https://antennapod.org/blog/2024/05/modernizing-the-code-structure



Exercises
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1. What is the likely architecture of the following systems? Provide a 
brief justification.

(a) Microsoft Excel (desktop version)

(b) Banking App (mobile)

(c) Twitter Web (front-end)

(d) Google Slides (front-end)

(e) Twitter/X (backend)

(f) Moodle



2. Answer on microservices:

(a) Why do microservices provide flexibility for teams to independently deploy 
their code?

(b) Why is this independence less feasible with monoliths? Specifically, why is 
it not recommended for a team to immediately deploy a modification made in 
a monolith?

(c) Why is sharing a database among microservices not recommended?



3. Suppose a streaming company needs to implement a system to detect 
the videos with quality problems (such as caption errors, audio problems, 
and frozen images). The videos are stored in persistent storage. The 
company is evaluating two architectures:

Architecture #1: Each detector is a microservice that receives the video 
identifier as a parameter, loads it from storage, and executes a specific 
quality detection algorithm on that video.

Architecture #2: The quality detectors are integrated in a monolith. The 
video is loaded only once from storage to main memory and shared 
across all detectors.
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For a streaming company with millions of customers, which architecture is 
more scalable? Provide justification.

Note: this exercise is based on a post from the Amazon Prime Video 
engineering blog
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March, 2023



End
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