
Chapter 7 - Architecture

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Architecture is about the important stuff.
Whatever that is. – Ralph Johnson

2

Architecture = high-level design

3

● The focus shifts from small units (e.g., classes)

● Focusing instead on larger and more relevant units

● Such as packages, modules, subsystems, layers,
services, etc

4

Software Design Software Architecture

Architectural Patterns = predefined architectures

5

● Layered

● Model-View-Controller (MVC)

● Microservices

● Message-Oriented

● Publish/Subscribe

Linus-Tanenbaum Debate (1992)

6

Linux Minix

On the Importance of Software Architecture

https://www.oreilly.com/openbook/opensources/book/appa.html

7

https://www.oreilly.com/openbook/opensources/book/appa.html

The beginning of the debate: Tanenbaum's msg (1992)

8

Tanenbaum's Argument

9

● Linux has a monolithic architecture:

○ The entire OS is a single executable file

○ Including process management, memory, files, etc

● Microkernel architecture is better:

○ Kernel only contains essential services

○ Other services run as independent processes

Linus's Reply

10

Linus's Argument

11

● In theory, microkernel architecture is theoretically superior

● However, other criteria have to be considered

● Most importantly, Linux is a reality and not just a promise

A New Response from Tanenbaum

12

Comment by Ken Thompson (Unix)

13

Ken Thompson predicted the future: Fast forward 17
years later (2009) to see Torvalds' statement at a Linux
conference

14

"We are definitely not the streamlined, small,
hyper-efficient kernel that I envisioned 15 years ago.
The kernel is huge and bloated… And whenever we
add a new feature, it only gets worse."

Key takeaway: the costs of architectural decisions
can take years to become apparent…

15

Layered Architecture

16

Layered Architecture

17

● A system is organized in a hierarchical way

● Layer n can only use services from layer n-1

● Widely used in networks and distributed systems

Advantages: divide and conquer

18

● Breaks down system complexity and facilitates:

○ Understanding of the system

○ Layer replacement (e.g., TCP to UDP)

○ Layer reuse (e.g., multiple apps use TCP)

Variations

19

● Three-Tier Architecture

● Two-Tier Architecture

Three-Tier Architecture

20

● Common when downsizing enterprise apps in the 80s, 90s

● Downsizing: migration from mainframes to UNIX servers

Three-Tier Architecture

21

Two-Tier Architecture

22

● Advantages of being simpler:

○ Tier 1: client (user interface + business logic)

○ Tier 2: database server

● Disadvantage: processing primarily occurs on the client

Model-View-Controller (MVC)

23

MVC Architecture

24

● First introduced in the 1980s through Smalltalk

● Designed to implement Graphical User Interfaces (GUIs)

MVC divides classes into 3 groups

25

● View: classes for implementing GUIs, including windows,
buttons, menus, scroll bars, etc.

● Controller: classes that handle events produced by input
devices such as mouse and keyboard

● Model: classes containing application logic and data

MVC = (View + Controllers) + Model

 = Graphical Interface + Model

26

27
Model

GUI #1

GUI #2

Traditional MVC apps

28

● MVC was originally designed for desktop applications

● Examples: Microsoft Word, Google Chrome, etc.

MVC Today

29

● MVC Web

● Single Page Applications

MVC Web

30

MVC Web

31

● MVC was adapted for the Web

● Popular frameworks include Ruby on Rails, Django, Spring,
PHP Laravel, etc.

32

33

HTML, CSS, JavaScript pages
(what the user sees)

34

Handles input data and coordinates with
model to generate output pages

35

Application logic (business rules) and
interface with the database

36

A simple Web-based MVC system

37

This example does not use any framework and has a
basic web interface for educational purposes

Controller

38

public class BookSearchController {
 ...
 public void start() {
 ...
 get("/", (req, res) -> {
 res.redirect("index.html");
 return null;
 });
 ...
 }
}

Browser (index.html)

39

Controller

40

public class BookSearchController {
 BookSearchService searchService;
 BookPage bookPage;
 ...
 public void start() {
 ...
 get("/search", (req, res) -> {
 String author = req.queryParams("author");
 Book book = searchService.searchByAuthor(author);
 return bookPage.displayBook(book.getTitle(),
 book.getAuthor(),
 book.getISBN());
 });
 ...
 }
}

Model

41

public class BookSearchService {

 public Book searchByAuthor(String author) {
 try (Connection con = DriverManager.getConnection(...)) {
 String query = "SELECT * FROM books WHERE author = ?";
 PreparedStatement stmt = con.prepareStatement(query);
 stmt.setString(1, author);
 ResultSet rs = stmt.executeQuery();
 String isbn = rs.getString("isbn");
 String title = rs.getString("title");
 return new Book(isbn, author, title);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 return null;
 }
 }
}

Controller

42

public class BookSearchController {
 BookSearchService searchService;
 BookPage bookPage;
 ...
 public void start() {
 ...
 get("/search", (req, res) -> {
 String author = req.queryParams("author");
 Book book = searchService.searchByAuthor(author);
 return bookPage.displayBook(book.getTitle(),
 book.getAuthor(),
 book.getISBN());
 });
 ...
 }
}

View

43

public class BookPage {

 public String displayBook(String title, String author, String isbn) {
 String res = "<h4> Book Details </h4>";
 res += "";
 res += " Title: " + title + " ";
 res += " Author: " + author + " ";
 res += " ISBN: " + isbn + " ";
 res += "";
 return res;
 }
}

Browser

44

45

MVC Frameworks remain relevant

46 https://rubyonrails.org (April 2024)

https://rubyonrails.org

Single Page Applications (SPAs)

47

Traditional Web Apps

48

Browser Server

Request

Response (HTML)

Request

Response (HTML)

Request

Response (HTML)

Problem: less responsive
interfaces

Multiple Page Applications

Single Page Applications

49

● Run in the browser, but are more independent of the server

○ Manipulate its own interface

○ Store and manage local data

○ Access the server only to fetch more data

● Example: GMail, Google Docs, Facebook, Figma, etc

● Implemented using JavaScript frameworks (React, Vue,
Svelte, etc)

Simple Application using Vue.js

50

51

Interface (Web, HTML)

52

53

Model

54

Data

Methods

Model

55

56

57

Summary

58

Traditional MVC
(Smalltalk): desktop

apps, pre-Web

MVC Web: MVC
adaptation for the

Web (fullstack)

SPA: MVC adaptation
for responsive apps

(frontend)

Microservices

59

Monoliths

60

● Monoliths: system exists as a single process at run-time

● Process: operating system process

Modules: compilation units

At runtime, a monolithic application executes
in a single process

Vertical vs Horizontal Scalability

61
https://www.section.io/blog/scaling-horizontally-vs-vertically/

Problem #1 with Monoliths: Scalability

62

● Horizontal scalability requires scaling the entire monolith

● This is inefficient when the bottleneck is in a single module

Problem #2 with Monoliths: Releases are slower

63

● The release process is slow, centralized, and bureaucratic

● Teams don't have autonomy to put modules into production

● Reason: changes can impact other teams' modules

● As a result:

○ Releases must follow predefined dates

○ Releases require several tests, sometimes manual, to
ensure correctness

64

Especially true in
a monolithic
codebase

Microservices

65

Microservices

66

● Services ⇒ Each module runs as an independent process

● Micro ⇒ small modules

67

 Monolithic
Architecture

68

 Monolithic
Architecture

Microservices-based
Architecture

Microservice with
1 module

Microservice with
3 modules

microservice = process (run-time, operating system)

Microservice with
2 modules

Advantage #1: Scalability

69

● Each module can be scaled independently

M1 is the performance
bottleneck

Advantage #2: Flexibility for Releases

70

● The risk of interference between processes is smaller

● This is because each process has its own address space

● As a result, teams have autonomy to put microservices into
production

Other Benefits of Microservices

● Microservices can use different technologies

● Partial failures (e.g., only one microservice may be offline)

Conway's Law (1968)
● Organizations design systems that mirror their own communication structure

72

squad squad squad

squad squad squad

squad squad squad

squad squad squad Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Who uses microservices?

73

● Large companies including Netflix, Amazon, Google, etc

Each node is a microservice

Example:
Uber (~2018)

74 https://eng.uber.com/microservice-architecture/

Database Patterns in Microservices

● Sharing a single database between
microservices is not recommended

● This increases coupling between
microservices (M1 and M2),
violating their independence

75

Database Patterns in Microservices

● Sharing a single database between
microservices is not
recommended.

● This increases coupling between
microservices (M1 and M2),
violating their independence

● Best practice: Each microservice has its DB.
● This architecture eliminates data coupling between M1

and M2, allowing them to evolve independently.
● Communication between microservices should occur via

well-defined interfaces
76

Microservices introduce significant complexity

● Managing hundreds of processes

● Increased network latency

● Complex data consistency (distributed transactions)

77

Recommendation: start with monoliths

● Consider microservices only when:

○ Monolith faces performance issues

○ Release delays become significant

● Migration can be implemented gradually over time

78

Message-Oriented Architecture

79

Understanding Message-Oriented Architecture

● Used in distributed applications

● Clients communicate with servers indirectly

● Communication occurs through an intermediary: a
message queue (or broker)

Advantage #1: Fault Tolerance

● Messages are preserved when the server is down

● Assuming the message queue runs on a reliable server

Advantage #2: Scalability

● Servers can be added dynamically to handle increased load

● Message queues also prevent server overload by buffering
incoming requests

Asynchronous Communication

● Enables loose coupling between clients and servers

● Space decoupling: clients and servers operate without
direct knowledge of each other

● Time decoupling: clients and servers can operate without
being simultaneously available

Publish/Subscribe Architecture

84

Publish/Subscribe

● Architectural pattern that extends message queue
functionality

● Messages are called events

Publish/Subscribe

● Systems can (1) publish events; (2) subscribe to events; (3)
receive notifications about events

1 2

3

Example: Airline System

● Event: ticket sale

Example: Airline System

Example: Airline System

Group communication:
1 publisher, n subscribers receive notifications

Other Architectural Patterns

90

Pipes and Filters

● Programs are called filters and they communicate via
pipes (which act as data buffers)

● Modular and flexible architecture; used by unix commands.
Example: ls | grep csv | sort

filter pipe

Client/Server

● Common in network services

● Examples: print service, file service, web service

Peer-to-Peer

● Every node is both client and server

● Consumer and provider of resources

● Example: file sharing using BitTorrent; Blockchain

Architectural Anti-Patterns

94

Big Ball of Mud

● A module can use any other module without restrictions

Example of Remodularization

● AntennaPod: open-source podcast player

● Android and Java

November, 2020 - Big Ball of Mud (with many circular dependencies)

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Developers' Comments

● "To test the database, for example, one normally wouldn’t
have to launch the full app. However, because the
database basically depended on everything else, most of
our tests required starting up a full Android device."

Developers' Comments

● "A particularly problematic aspect of the structure was that
there were many “utility” classes. These utility classes
caused many of the cycles visible in the structure."

May, 2024

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Exercises

101

1. What is the likely architecture of the following systems? Provide a
brief justification.

(a) Microsoft Excel (desktop version)

(b) Banking App (mobile)

(c) Twitter Web (front-end)

(d) Google Slides (front-end)

(e) Twitter/X (backend)

(f) Moodle

2. Answer on microservices:

(a) Why do microservices provide flexibility for teams to independently deploy
their code?

(b) Why is this independence less feasible with monoliths? Specifically, why is
it not recommended for a team to immediately deploy a modification made in
a monolith?

(c) Why is sharing a database among microservices not recommended?

3. Suppose a streaming company needs to implement a system to detect
the videos with quality problems (such as caption errors, audio problems,
and frozen images). The videos are stored in persistent storage. The
company is evaluating two architectures:

Architecture #1: Each detector is a microservice that receives the video
identifier as a parameter, loads it from storage, and executes a specific
quality detection algorithm on that video.

Architecture #2: The quality detectors are integrated in a monolith. The
video is loaded only once from storage to main memory and shared
across all detectors.

104

For a streaming company with millions of customers, which architecture is
more scalable? Provide justification.

Note: this exercise is based on a post from the Amazon Prime Video
engineering blog

105

March, 2023

End

106

