
Chapter 7 - Architecture

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Architecture is about the important stuff.
Whatever that is. – Ralph Johnson

2

Architecture = high-level design

3

● The focus is no longer on small units (e.g., classes)

● But on larger and more relevant units

● Packages, modules, subsystems, layers, services, ...

Architectural Patterns = predefined architectures

4

● Layered

● Model-View-Controller (MVC)

● Microservices

● Message-Oriented

● Publish/Subscribe

Linus-Tanenbaum Debate (1992)

5

Linux Minix OS

On the Importance of Software Architecture

https://www.oreilly.com/openbook/opensources/book/appa.html

6

https://www.oreilly.com/openbook/opensources/book/appa.html

Beginning of the debate: Tanenbaum's msg (1992)

7

Tanenbaum's Argument

8

● Linux has a monolithic architecture

○ OS is a single executable file

○ Process management, memory, files, etc

● Microkernel architecture is better:

○ Kernel only contains essential services

○ Other services run as independent processes

Linus's Reply

9

Linus's Argument

10

● In theory, microkernel architecture is more interesting

● But other criteria have to be considered

● For instance, Linux is a reality and not just a promise

New message from Tanenbaum

11

Comentário do Ken Thompson (Unix)

12

Ken Thompson predicted the future: 17 years later
(2009) see Torvalds' statement at a Linux conference

13

We are definitely not the streamlined, small,
hyper-efficient kernel that I envisioned 15 years
ago. The kernel is huge and bloated… And
whenever we add a new feature, it only gets worse.

Takeaway: the costs of architectural decisions
can take years to appear…

14

Layered Architecture

15

Layered Architecture

16

● System is organized in a hierarchical way

● Layer n can only use services from layer n-1

● Widely used in networks and distributed systems

Advantages: divide and conquer

17

● Breaks down system complexity and facilitates:

○ Understanding

○ Layer exchange (e.g., TCP to UDP)

○ Layer reuse (e.g., multiple apps use TCP)

Variations

18

● Three-Tier Architecture

● Two-Tier Architecture

Three-Tier Architecture

19

● Common when downsizing enterprise apps in 80s and 90s

● Downsizing: migration from mainframes to Unix servers

Three-Tier Architecture

20

Two-Tier Architecture

21

● Simpler:

○ Tier 1: client (interface + logic)

○ Tier 2: database server

● Disadvantage: all processing is done on the client

Model-View-Controller (MVC)

22

MVC Architecture

23

● Introduced in the 1980s, with Smalltalk

● To implement graphical interfaces (GUIs)

MVC divides classes into 3 groups

24

● View: classes for implementing GUIs, like windows,
buttons, menus, scroll bars, etc

● Control: classes that handle events produced by input
devices such as mouse and keyboard

● Model: classes with application logic and data

MVC = (View + Controllers) + Model

 = Graphical Interface + Model

25

26
Model

GUI #1

GUI #2

Traditional MVC apps

27

● MVC was designed for desktop applications

● Example: Microsoft Word, Google Chrome, etc

MVC Today

28

● MVC Web

● Single Page Applications

MVC Web

29

MVC Web

30

● MVC adaptation for the Web

● Ruby on Rails, DJango, Spring, PHP Laravel, etc

31

32

HTML, CSS, JavaScript pages
(what the user sees)

33

Receive input data and provide
information to generate output page

34

Application logic (business rules) and
interface with the database

35

A simple Web-based MVC system

36

This example does not use any framework and has a
very simple web interface, only for didactic purposes.

Controller

37

public class BookSearchController {
 ...
 public void start() {
 ...
 get("/", (req, res) -> {
 res.redirect("index.html");
 return null;
 });
 ...
 }
}

Browser (index.html)

38

Controller

39

public class BookSearchController {
 BookSearchService searchService;
 BookPage bookPage;
 ...
 public void start() {
 ...
 get("/search", (req, res) -> {
 String author = req.queryParams("author");
 Book book = searchService.searchByAuthor(author);
 return bookPage.displayBook(book.getTitle(),
 book.getAuthor(),
 book.getISBN());
 });
 ...
 }
}

Model

40

public class BookSearchService {

 public Book searchByAuthor(String author) {
 try (Connection con = DriverManager.getConnection(...)) {
 String query = "SELECT * FROM books WHERE author = ?";
 PreparedStatement stmt = con.prepareStatement(query);
 stmt.setString(1, author);
 ResultSet rs = stmt.executeQuery();
 String isbn = rs.getString("isbn");
 String title = rs.getString("title");
 return new Book(isbn, author, title);
 } catch (SQLException e) {
 System.out.println(e.getMessage());
 return null;
 }
 }
}

Controller

41

public class BookSearchController {
 BookSearchService searchService;
 BookPage bookPage;
 ...
 public void start() {
 ...
 get("/search", (req, res) -> {
 String author = req.queryParams("author");
 Book book = searchService.searchByAuthor(author);
 return bookPage.displayBook(book.getTitle(),
 book.getAuthor(),
 book.getISBN());
 });
 ...
 }
}

View

42

public class BookPage {

 public String displayBook(String title, String author, String isbn) {
 String res = "<h4> Book Details </h4>";
 res += "";
 res += " Title: " + title + " ";
 res += " Author: " + author + " ";
 res += " ISBN: " + isbn + " ";
 res += "";
 return res;
 }
}

Browser

43

44

MVC Frameworks remain relevant

45 https://rubyonrails.org (April 2024)

https://rubyonrails.org

Single Page Applications (SPAs)

46

Traditional Web Apps

47

Browser Server

Request

Response (HTML)

Request

Response (HTML)

Request

Response (HTML)

Problem: less responsive
interfaces

Multiple Page Applications

Single Page Applications

48

● Run in the browser, but is more independent of the server

○ Manipulates its own interface

○ Stores its data

○ Access the server to fetch more data

● Example: GMail, Google Docs, Facebook, Figma, etc

● Implemented in JavaScript

Simple Application using Vue.js

49

50

Interface (Web, HTML)

51

52

Model

53

Data

Methods

Model

54

55

56

Summary

57

Traditional MVC
(Smalltalk): desktop

apps, pre-Web

MVC Web: MVC
adaptation for the

Web (fullstack)

SPA: MVC adaptation
for responsive apps

(frontend)

Summary: MVC Variants

58

● Traditional: Smalltalk, before Web

● Web: similar to 3-Tier

● SPA: similar to traditional MVC

Microservices

59

Monoliths

60

● Monoliths: system is a single process at run-time

● Process: operating system process

Modules: compilation units

At runtime, everything runs in a single process

Vertical vs Horizontal Scalability

61

https://www.section.io/blog/scaling-horizontally-vs-vertically/

Problem #1 with Monoliths: Scalability

62

● Horizontal scalability requires scaling the entire monolith

● Even when the bottleneck is in a single module

Problem #2 with Monoliths: Releases are slower

63

● The release process is slow, centralized, and bureaucratic

● Teams don't have autonomy to put modules into production

● Reason: changes can impact other teams' modules

● As a result:

○ Predefined dates for release

○ Several tests, sometimes manual, before release

64

particularly, in a
monolithic
codebase

Microservices

65

Microservices

66

● Services ⇒ Modules are independent processes

● Micro ⇒ small modules

67

 Monolithic
Architecture

68

 Monolithic
Architecture

Microservices-based
Architecture

Microservice with
1 module

Microservice with
3 modules

microservice = process (run-time, operating system)

Microservice with
2 modules

Explaining it another way

69

● Suppose a system with n endpoints

● Monolith: all n endpoints in the same process

● Microservices: each endpoint is a separate process

Advantage #1: Scalability

70

● We can scale just the module with performance problem

M1 is the performance
bottleneck

Advantage #2: Flexibility for Releases

71

● Chances of interference between processes are smaller

● Reason: each process has its own address space

● Thus, teams have autonomy to put microservices into
production

Other advantages

● Microservices can use different technologies

● Partial failures (e.g., only one microservice can be offline)

Lei de Conway (1968)
● Software architecture mirrors the organization's architecture

73

squad squad squad

squad squad squad

squad squad squad

squad squad squad Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

micro
serviço

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Micro
service

Who uses microservices?

74

● Large companies like Netflix, Amazon, Google, etc

Each node is a microservice

Example:
Uber (~2018)

75 https://eng.uber.com/microservice-architecture/

Microservices & Databases

● Architecture that is not
recommended

● Reason: it increases coupling
between M1 and M2

Microservices & Databases

● Architecture that is not
recommended.

● Reason: it increases coupling
between M1 and M2

● Recommended architecture
● Reason: there is no data coupling between M1 and

M2. Thus, M1 and M2 can evolve independently
● If M1 needs to use M2 (or vice versa), this should

occur via interfaces

When not to use microservices?

● Microservices-based architecture is more complex

○ Distributed system (manage hundreds of processes)

○ Latency (communication via network)

○ Distributed transactions

Recommendation: start with monoliths

● Only migrate to microservices if:

○ Monolith with performance problems

○ Monolith is delaying releases

● Migration can be gradual…

Message-Oriented Architecture

80

Message-Oriented Architecture

● Context: distributed applications

● Clients do not communicate directly with the servers

● But with an intermediary: message queue (or broker)

Advantage #1: Fault Tolerance

● No more "server is down" message

● Assuming the message queue runs on a reliable server

Advantage #2: Scalability

● Easier to add new servers and harder to overload a server
with too many messages

Asynchronous Communication

● Loose coupling between clients and servers

● Space decoupling: clients do not know servers and vice
versa

● Time decoupling: clients and servers do not need to be
simultaneously available

Publish/Subscribe Architecture

85

Publish/Subscribe

● Improvement of message queue

● Messages are called events

Publish/Subscribe

● Systems can: (1) publish events; (2) subscribe to events;
(3) be notified about the occurrence of events

1 2

3

Example: Airline System

● Event: ticket sale

Example: Airline System

Example: Airline System

Group communication: 1 system publishes events, n
systems subscribe and are notified of this publication

Other Architectural Patterns

91

(1) Pipes and Filters

● Programs are called filters and communicate via pipes
(which act as buffers)

● Flexible architecture. Used by unix commands.

● Example: ls | grep csv | sort

filter pipe

(2) Client/Server

● Common in network services

● Examples: print service, file service, web service

(3) Peer-to-Peer

● Every node is a client and server

● Consumer and provider of resources

● Example: file sharing using BitTorrent; Blockchain

Architectural Anti-Patterns

95

Big Ball of Mud

● A module can use any other module of the system

Example of Remodularization

● AntennaPod: open-source podcast player

● Android and Java

November, 2020 - Big Ball of Mud (with many circular dependencies)

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Developers' Comments

● "To test the database, for example, one normally wouldn’t
have to launch the full app. However, because the
database basically depended on everything else, most of
our tests required starting up a full Android device."

Developers' Comments

● "A particularly problematic aspect of the structure was that
there were many “utility” classes. These utility classes
caused many of the cycles visible in the structure."

May, 2024

https://antennapod.org/blog/2024/05/modernizing-the-code-structure

Exercises

102

1. What is the likely architecture of the following systems? Briefly justify
your answer.

(a) Microsoft Excel (desktop version)

(b) A Banking App (mobile)

(c) Twitter Web (front-end)

(d) Google Slides (front-end)

(e) Twitter (backend)

(f) Moodle

2. Answer on microservices:

(a) Why does microservices provide flexibility for teams to independently
deploy their code?

(b) Why is this independence less feasible with monoliths? In other words,
why is it not recommended for a team to immediately deploy a modification
made in a monolith?

(c) Why should microservices not share the same database?

3. Suppose a streaming company that plans to implement a system to
detect videos with quality problems (for example, issues in captions,
audio, frozen images, etc). The videos are stored in a storage system, i.e.,
secondary memory. The company is evaluating two architectures:

Architecture #1: each detector is a microservice, which receives the name
of the video as a parameter, loads it from storage, and executes a
particular quality detection algorithm on that video.

Architecture #2: the quality detectors are modules of a monolith. Thus, the
video is loaded only once from storage to main memory and shared by all
detectors.

105

Assuming that the streaming company has millions of customers, which
architecture is more scalable? Justify.

Note: this exercise is based on a post from the Amazon Prime Video blog

106

March, 2023

End

107

