
Chapter 6 - Design Patterns

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Design Patterns

2

● Recurrent solutions to design problems faced by developers

● Gang of Four (GoF) book

1994

Usage #1: Design Reuse

3

● Suppose we have a design problem

○ It might exist a pattern that solves this problem

○ Reusing it prevents us from reinventing the wheel

Usage #2: Vocabulary

4

● Vocabulary for discussions, documentation, etc.

5

23 patterns

Structure

6

● Context

● Problem

● Solution (using a design pattern)

Important: Design for Change

7

● Design patterns facilitate future changes in the code

● If the code is unlikely to to change, the use of patterns is
an example of overengineering

(1) Factory

Context: System that uses communication channels

9

Problem

10

● Clients will need to use UDP instead of TCP

● How to parameterize the new calls?

● How to provide a design that facilitates this change?

Solution: Factory Pattern

11

● Factory: method that centralizes the creation of objects

single point of change if we
have to change to UDP

Without a Factory

12

Without a Factory

13

With a Factory

⇒

(2) Singleton

Context: Logger class

15

Context: Logger class

16

Problem: Every method uses
its own instance of Logger

Problem

17

● Every operation should be logged in the same file

● How to make clients use the same Logger instance?

https://refactoring.guru/design-patterns/singleton

https://refactoring.guru/design-patterns/singleton

Solution: Singleton Pattern

18

● Transform the Logger class into a Singleton

● Singleton: class that has at most one instance

19

20

21

1

2

22

23

Same instance

(3) Proxy

Context: Book search function

25

Problem: use a cache to improve performance

26

● If "book in cache"

○ return the book immediately

○ otherwise, continue with the search

● But we don't want to change the code of BookSearch

○ It is already working

○ There is a developer who maintains it

Solution: Proxy Pattern

27

● Proxy: intermediary object between client and a base object

● Clients no longer speak directly with the base object

● They have to go through the proxy

cache logic

28

29

30

(4) Adapter

Context: Multimedia Projectors Control System

32

Provided by projector manufacturers
⇒ we can’t edit them!

Problem

33

● In the multimedia control system, we would like to use a
single Projector interface

We'd like to use this
interface, without worrying
about the classes that
implement it

Problem

34

● Classes (drivers) from manufacturers
● We can't edit them to implement the Projector interface

35

Input interface Output interface

Adapter Class

Solution: Adapter class

36

Solution: Adapter class

37

38

Projector

SamsungProjectorAdapter

SamsungProjector

(5) Facade

Context, Problem & Solution

40

● Context: suppose a module M used by several other
modules

● Problem: M's interface is complex

○ Clients are complaining that it's hard to use it

● Solution: create a simpler interface for M, called Facade

41

https://refactoring.guru/design-patterns/facade

https://refactoring.guru/design-patterns/facade

Example: Interpreter

43

44

Facade: very simple interface

45

Scanner

Parser

AST

CodeGen

Client

Without a Facade

Scanner

Parser

AST

CodeGen

Interpreter
(facade)

With a Facade

Client

interpreter interpreter

Exercises

1. Singleton is one of the most controversial design patterns. Erich
Gamma, one of the GoF authors, has even recommended in an
interview that it should be removed from the catalog:

> Erich: When discussing which patterns to drop, we found that we still love
them all. (Not really—I'm in favor of dropping Singleton…)

Explain why Singletons can cause problems if not used properly.

47

https://www.informit.com/articles/article.aspx?p=1404056

2. Why doesn't the Singleton implementation shown in the slides work
with concurrent systems (multi-thread)? Describe a bug that can occur
when it's used with this type of system.

3. In addition to performance optimization via cache, as commented in
the slides, describe three other non-functional requirements that can
be implemented in a Proxy.

48

4. Answer the following questions that correlate design patterns
with design properties (cohesion, coupling, etc.) and design
principles (SOLID: single responsibility, open/closed, Liskov,
interface segregation, and dependency inversion):

(a) Which design property is improved with a proxy?

(b) Which design principle is followed when we use a proxy?

(c) A facade improves which design property?

(d) Adapters are related to which design principle?

(e) If designed incorrectly, facades violate which design principle?

49

5. The following class diagram illustrates the Adapter pattern.

● In UML, what type of relationship is (a)? And what type is (b)?

● Map Target, Adapter, and Adaptee to the interfaces and
classes from the Projector example discussed in the slides.

50 Source: GoF book

,,

(a)

(b)

(6) Decorator

Context: System that uses communication channels
(Used before to explain the Factory pattern)

52

Problem: We need to add extra functionalities to
channels

53

● Default channels (TCP, UDP) are not enough

● We also need channels with:

○ Data compression/decompression

○ Buffers

○ Logging

○ etc

Solution: Decorator Pattern

54

● Solves this problem through composition, instead of
inheritance

● Thus, without creating an excessive number of classes

Example

55

Example

56

Another example

57

Another example

58

Another example

59

60

Inside one box, there is another box,
which has another box... until reaching
the gift. That is, until reaching
TCPChannel or UDPChannel.

Decorator Implementation

62

ChannelDecorator

63

Decorators are subclasses of
this class

ZipChannel Implementation

65

Example

66

class BufferChannel extends ChannelDecorator {
 ... super.channel
}

Another example

67

class ZipChannel extends ChannelDecorator {
 ... super.channel
}

Another example

68

class TCPChannel implements Channel {
 // final Channel
}

(7) Strategy

Context: Data Structures Library

70

Problem

71

● MyList class is not open to extensions

● Example: other sorting algorithm (ShellSort, HeapSort, etc)

Solution: Strategy Pattern

72

● Goal: parametrize the algorithms used by a class

● Make a class open to new algorithms

● In the example: new sorting algorithms

Step #1: Create a hierarchy of strategies
(strategy = algorithm)

74

Step #2: Modify MyList to use the strategy hierarchy

76

77

78

(8) Observer

Context: Weather Station System

80

● Two main classes: Temperature and Thermometer

● Several thermometers: digital, analog, web, mobile, etc

● If the temperature changes, the thermometers should be
updated

Problem

81

● We don't want to couple Temperature to Thermometers

● Reasons:

○ Make domain class (model) independent of view
classes (or UI classes)

○ Make it easy to add a new type of thermometer

Solution: Observer Pattern

82

● Implements a one-to-many relationship between:

○ Subject (Temperature)

○ Observers (Thermometers)

● When the Subject changes, Observers are notified

● Subject doesn't know the concrete type of its Observers

Example

83

Subject

Example

84

Two observers

Example

85

Notifies observers

86

87

Class that implements
addObservers and
notifyObservers

88

Notifies all observers
(thermometers) added to
this temperature

89

Observers must implement this method. Calling
notifyObservers (in Temperature) results in the
execution of update of each observer.

90

91

92

(9) Template Method

Context: Payroll System

94

Problem

95

● Calculating salaries:

○ Similar steps for public and corporate employees

○ But, there are details that are different

● In the parent class (Employee) we want to define the main
workflow (or template method) for calculating salaries

● And leave to the subclasses refining these steps

Solution: Template Method Pattern

96

● Implements the skeleton of an algorithm in a base class

● But leaves some steps (abstract methods) to subclasses

● Subclasses can customize an algorithm, but without
changing its core behavior

97

98

Implemented by the
subclasses

99

100

Main steps (or template,
or model) for calculating
net salaries

Inversion of Control

101

● Template Method is used to implement Inversion of
Control, mainly in frameworks

● Framework: defines the "template" of a system

○ Clients can parameterize some steps

○ Framework calls the code defined by the clients

○ Thus, the term inversion of control

Frameworks vs Libraries

102

Source: https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-06.md

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-06.md

(10) Visitor

Context: System with Vehicle and subclasses

104

System also has a polymorphic list of Vehicle

105

List<Vehicle> parkedVehicleList = new ArrayList<Vehicle>();

list.add(new Car(..));

list.add(new Bus(..));

...

Problem

106

● We have to perform certain operations with these vehicles

● Example:

○ Print vehicle data

○ Save vehicle data to a database

○ Send a message to vehicle owners

○ Compute vehicle taxes

○ etc

Problem

107

● We also want to follow the Open/Closed principle:

○ Keep Vehicle and subclasses closed to changes

○ But open to extensions

○ Extensions: operations performed on the vehicles

First Alternative

108

The interface was created because tomorrow we might have other Visitors (e.g.,
save data to a JSON file).

First Alternative

109

In Java and similar languages, the compiler does not know
the dynamic type of "vehicle".
Therefore, it does not know which method of PrintVisitor
should be called.

Solution: Visitor Pattern

110

● Enables adding a generic operation to a family of classes
without modifying their code

The idea is to "open" these
classes to the execution of a
generic operation

111

112

Invokes "accept" of the dynamic type of the vehicle. Suppose it is a Car.

Type of "this" is known statically (Car)

Visitor: advantages & disadvantages

114

Advantage #1
● Visitors facilitate adding any method to a class hierarchy

○ A second Visitor may exist with different operations

○ Example: calculating vehicle taxes

115

Disadvantage #1
● Suppose we need to add a new class to the hierarchy:

○ For example, a Truck class

○ We will have to update all Visitors with a new method:
visit(Truck).

116

Disadvantage #2
● Visitors can break information hiding:

○ Vehicle might have to implement public methods
exposing its internal state

○ Just to allow the access by the Visitors

When is it not worth using
design patterns?

When is it not worth using design patterns?

118

● Design Patterns ⇔ Design for change

● If the likelihood of changes is zero, we don't need design
patterns

Trade-off: Design for Change vs Complexity

119

● To enable design for change, design patterns complicate
the design

● Example: they require the creation of additional classes

Example: Strategy

121

Solution without a design pattern

1 class

122

Solution without a design pattern

1 class

Solution with a design pattern

1 class (with more code)
+1 abstract class
+2 classes with strategies

Patternitis: a (likely) example

123

End

