
Chapter 6 - Design Patterns

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Design Patterns

2

● Common solutions to design problems faced by developers

● Gang of Four (GoF) book

1994

Usage #1: Design Reuse

3

● Suppose we have a design problem

● There may exist a design pattern that solves this problem

● Reusing this pattern helps us avoid reinventing the wheel

Usage #2: Vocabulary

4

● Vocabulary for discussions, documentation, etc.

5

What
components
make up an
engine?

Similarly, which components (or patterns) can I
reuse in my software design?

7

23 patterns

Structure

8

● Context

● Problem

● Solution (using a design pattern)

Important: Design for Change

9

● Design patterns simplify future changes in the code

● If the code is unlikely to change, implementing patterns
might represent overengineering

(1) Factory

Context: System with communication channels

11

Problem

12

● Applications will need to change from TCP to UDP

● How should we design the system to accommodate this
change?

● How can we parameterize the communication protocol?

Solution: Factory Pattern

13

● Factory: method that encapsulates the creation of objects

single point of change if we
have to change to UDP

Without a Factory

14

Without a Factory

15

With a Factory

⇒

(2) Singleton

Context: Logger class

17

Context: Logger class

18

Problem: Every method has its
own instance of Logger

Problem

19

● All operations should be logged in the same file

● How can we ensure clients use the same Logger instance?"

https://refactoring.guru/design-patterns/singleton

https://refactoring.guru/design-patterns/singleton

Solution: Singleton Pattern

20

● Transform the Logger class into a Singleton

● A Singleton is a class that has at most one instance

21

22

23

1

2

24

25

Same instance

(3) Proxy

Context: Book search function

27

Problem: using a cache to improve performance

28

● If "book in cache"

○ return the book immediately

○ otherwise, continue with the search

● We want to avoid modifying BookSearch because:

○ It is already tested and working

○ Another developer maintains it

Solution: Proxy Pattern

29

● Proxy: intermediary object between client and a base object

● Clients communicate directly with the proxy instead of the
base object; the proxy forwards requests to the base object

cache logic

30

31

32

(4) Adapter

Context: Multimedia Projectors Control System

34

Drivers are provided by projector manufacturers
⇒ therefore we can't edit them!

Problem

35

● In the multimedia control system, we need to use a single
Projector interface

Goal: Use this interface
while abstracting away the
implementation classes

Problem

36

● Vendor-provided classes (drivers) from manufacturers
● We cannot modify them to implement the Projector interface

37

Input interface Output interface

Adapter Class

Solution: Adapter class

38

Solution: Adapter class

39

40

Projector

SamsungProjectorAdapter

SamsungProjector

(5) Facade

Context, Problem & Solution

42

● Context: A module M is used by several other modules

● Problem: M's interface is complex

● Clients are complaining that it's difficult to use the module

● Solution: Create a simpler interface for M, called a Facade

43

https://refactoring.guru/design-patterns/facade

https://refactoring.guru/design-patterns/facade

Example: Interpreter

45

46

Facade: very simple interface

47

Scanner

Parser

AST

CodeGen

Client

Without a Facade

Scanner

Parser

AST

CodeGen

Interpreter
(facade)

With a Facade

Client

interpreter interpreter

Exercises

1. Singleton is one of the most controversial design patterns. Erich
Gamma, one of the GoF book's authors, has stated in an interview
that it should be removed from the catalog:

> Erich: When discussing which patterns to drop, we found that we still love
them all. (Not really—I'm in favor of dropping Singleton…)

Explain why Singletons can cause problems if not used properly.

49

https://www.informit.com/articles/article.aspx?p=1404056

2. Why isn't the Singleton implementation shown in the slides
compatible with concurrent systems (multi-threaded applications)?
Provide an example of a bug that can occur in this type of system.

3. Beyond performance optimization via caching, as discussed in the
slides, identify three other non-functional requirements that can be
implemented using a Proxy.

50

4. Answer the following questions about the relationship between
design patterns, design properties (cohesion, coupling, etc.), and
the SOLID principles:

(a) Which design property does a Proxy pattern improve?

(b) Which SOLID principle is followed when using a Proxy?

(c) Which design property does a Facade pattern improve?

(d) The Adapter pattern follows which SOLID principle?

(e) When implemented incorrectly, which SOLID principle might a
Facade pattern violate?

51

5. Analyze this class diagram that illustrates the Adapter pattern:

● In UML, what type of relationship is the arrow (a)? And (b)?

● Correlate Target, Adapter, and Adaptee to the corresponding
interfaces and classes from the Projector example in the slides.

52 Source: GoF book

,,

(a)

(b)

(6) Decorator

Context: System that uses communication channels
(previously used to explain the Factory pattern)

54

Problem: We need to add additional functionalities to
channels

55

● Basic channels (TCP, UDP) are not sufficient

● We also need channels with:

○ Data compression/decompression

○ Buffering capabilities

○ Logging

○ etc

Solution: Decorator Pattern

56

● Address this problem through composition, rather than
inheritance

● Thus, avoids creating an excessive number of classes

Example

57

Example

58

Another example

59

Another example

60

Another example

61

62

Inside one box, there is another box,
which has another box... until finally
reaching the gift—similar to how our
decorators wrap around TCPChannel or
UDPChannel.

Decorator Implementation

64

ChannelDecorator

65

Decorators are subclasses of
this class

ZipChannel Implementation

67

Example

68

class BufferChannel extends ChannelDecorator {
 ... super.channel
}

Another example

69

class ZipChannel extends ChannelDecorator {
 ... super.channel
}

Another example

70

class TCPChannel implements Channel {
 // final Channel
}

(7) Strategy

Context: Data Structures Library

72

Problem

73

● MyList class is not open for extensions

● Example: using other sorting algorithms (ShellSort,
HeapSort, etc)

Solution: Strategy Pattern

74

● Goal: parametrize the algorithms used by a class

● Enable a class to be open to new algorithms

● In our example: implementing new sorting algorithms

Step #1: Create a Strategy hierarchy
(where each strategy represents an algorithm)

76

Step #2: Modify MyList class to use a Strategy

78

79

80

(8) Observer

Context: Weather Station System

82

● Two main classes: Temperature and Thermometer

● Several thermometers: digital, analog, web, mobile, etc

● When the temperature changes, all thermometers should
be updated

Problem

83

● We don't want to couple Temperature to Thermometers

● Reasons:

○ Maintain domain class (model) independent from view
classes (UI classes)

○ Enable easy addition of new thermometer types

Solution: Observer Pattern

84

● Implements a one-to-many relationship between:

○ Subject (Temperature)

○ Observers (Thermometers)

● When the Subject changes, Observers are notified

● Subject doesn't know the concrete type of its Observers

Example

85

Subject

Example

86

Two observers

Example

87

Notifies observers

88

89

Class that implements
addObservers and
notifyObservers

90

Notifies all registered
observers (thermometers)
when this temperature
value changes

91

All observers must implement this method. When
Temperature's notifyObservers method is called, it
triggers the update() execution of each registered
observer.

92

93

94

(9) Template Method

Context: Payroll System

96

Problem

97

● Salary calculation process: Similar steps for public and
corporate employees

● However, there are specific differences in implementation

● In the parent class (Employee), we want to define the main
workflow (template method pattern) for calculating salaries

● Subclasses will implement the specific details of these steps

Solution: Template Method Pattern

98

● Implements the skeleton of an algorithm in a base class

● But leaves some steps (abstract methods) to subclasses

● Subclasses can customize specific steps of the algorithm,
while preserving its core behavior

99

100

Implemented by the
subclasses

101

102

Template method for net
salary calculation

Inversion of Control

103

● Template Method enables Inversion of Control, particularly
in frameworks

● Framework: defines the "template" of a system

○ Clients can customize specific steps

○ Framework executes the code defined by the clients

○ Thus, the term inversion of control

Frameworks vs Libraries

104

Source: https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-06.md

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-06.md

(10) Visitor

Context: System with Vehicle and subclasses

106

The system has a polymorphic list of Vehicle objects

107

List<Vehicle> parkedVehicleList = new ArrayList<Vehicle>();

list.add(new Car(..));

list.add(new Bus(..));

...

Problem

108

● We need to perform certain operations on all vehicles

● Examples:

○ Print vehicle data

○ Save vehicle data to the database

○ Send notifications to vehicle owners

○ Compute vehicle taxes

○ etc

Problem

109

● We also want to follow the Open/Closed principle

● Keep Vehicle and its subclasses closed for modification,
while remaining open for extensions

● Extensions: new operations performed on vehicles

First Alternative

110

An interface is used to enable future Visitor implementations (e.g., implementing a
JSON file storage visitor)

First Alternative

111

In Java and similar languages, the compiler does not know
the dynamic type of "vehicle". Therefore, it does not know
which "visit" method of the PrintVisitor should be executed.

Solution: Visitor Pattern

112

● Enables the addition of new operations to a class
hierarchy without modifying existing code

The idea is to "open" these
classes to the execution of a
generic operation

113

114

Invokes the "accept" method based on the dynamic type of the vehicle
(suppose it is a Car)

Type of "this" is known statically (Car)

Method dispatch consists of two dynamic steps and one static step

115

if "vehicle"

Car

Bus

Bike

etc

vehicle.accept(visitor) ⇒

visitor.visit(this) ⇒

if "visitor"
 if "this"

Car Bus Bike

PrintVisitor visit(Car) visit(Bus) visit(Bike)

etc

Run-time decision Compile-time decision. The type of "this"
is known statically.

⇒ Car.accept(visitor) { visitor.visit(this); }

⇒ Bus.accept(visitor) { visitor.visit(this); }

⇒ Bike.accept(visitor) { visitor.visit(this); }

Visitor: advantages & disadvantages

117

Advantage #1
● Visitor facilitates adding new operations to a class

hierarchy

● We can also define multiple visitors

● Example: A TaxVisitor for calculating vehicle taxes

118

Disadvantage #1
● Suppose we need to add a new class to the hierarchy:

○ Such as a Truck class

○ Each existing Visitor must be modified to include a
new method: visit(Truck)

119

Disadvantage #2
● Visitors may compromise information hiding

● Example: Vehicle classes often need to implement
public methods that expose internal state

● These methods exist solely to allow access by Visitors

When should you avoid design patterns?

When should you avoid design patterns?

121

● Design Patterns ⇔ Design for change

● When the likelihood of changes is zero, using design
patterns is unnecessary

Trade-off: Design for Change vs Complexity

122

● Design patterns increase complexity when enabling
design for change

● For example: they often require creating additional
classes

Example: Strategy

124

Solution without a design pattern

1 class

125

Implementation without a design pattern

1 class

Implementation using a design pattern

1 class (with more code)
+1 abstract class
+2 classes with strategies

Patternitis: a (likely) example

126

End

