
Chapter 5 - Design Principles

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so 
long as attribution is given to the author. 

https://softengbook.org


"The most fundamental problem in computer science is 
problem decomposition: how to take a complex problem and 
divide it up into pieces that can be solved independently" 
-- John Ousterhout

2



Definition

3

● Ousterhout's quote is an excellent definition for design

● Software design = break a "big problem" into smaller parts

● Implementing the smaller parts implements the "big 
problem"



Example: Compiler

4



Modules

5

● Smaller parts that result from the decomposition of the 
"big problem"

● Other names: packages, components, folders, etc



What are we going to study?

6

● Design Properties

● Design Principles



Design Properties

7

● Conceptual Integrity

● Information Hiding

● Cohesion

● Coupling



Design Principles

8

● Single Responsibility

● Interface Segregation

● Prefer Interfaces to Classes

● Open/Closed

● Demeter

● Liskov Substitution



Design Properties

9



Conceptual Integrity

10



Conceptual Integrity: coherence of features, design, 
and implementation decisions

11

Example Counter-Example



Why is there a lack of conceptual integrity in these slides?

12



Conceptual Integrity applies to:

13

● Functional requirements

● User interface

● Design decisions

● Implementation decisions

● Technological decisions

● etc



Examples (referring to user interface)

14

● "Exit" button should be the same on all pages

● If a system uses tables to present results, all tables should 
have the same layout

● All results should be shown with 2 decimal places



Examples (at design/code level)

15

● All variables should follow the same naming pattern

○ Counter-example: total_note vs averageNote

● All modules should use the same framework (same version)

● If a problem is solved using a data structure X, all similar 
problems should use X



"Conceptual integrity is the most important 
consideration in system design" -- Fred Brooks

16



Reason: Conceptual integrity facilitates the use 
and understanding of a system

17



Information Hiding

18



Origin of this property (David Parnas, 1972)

19



20



21

   license plate

car model



22

Constructor (creates the Hashtable)



23

Problem: developers have to 
manipulate an internal data structure 
to register a vehicle parking



Problem

24

● Classes need a little bit of "privacy"

● For evolving independently of the other classes

● Previous code: client code directly accesses the hashtable

● Comparison with a manual parking control system:

○ Customers have to enter the parking lot booth 

○ Write down their car data in the logbook



Implementation with information hiding

25



26

1



27

2



28

3

ParkingLot is now free to change its internal 
data structures



Information Hiding

29

● Classes should hide their internal implementation details

● Using the private modifier

● Especially those details subject to change

● Additionally, the class interface should be stable

● Interface: set of public methods and attributes of a class



Good modules are like icebergs
(small public and visible part; large submerged and private part)

30
Source: Bertrand Meyer, Object-oriented software construction, 1997 (page 51) 



Cohesion

31



Cohesion

32

● Classes should have a single goal and offer a single service

● This also applies to functions, methods, packages, etc.



Counter-example 1

33

❌



Counter-example 1

34

Should be broken down into two functions: sin and cos

❌



Counter-example 2

35

❌



Counter-example 2

36

We should extract a Manager class, with the data about managers

❌



Example

37

All these methods manipulate Stack elements

✅



Coupling

38



Coupling

39

● No class is an island… Classes depend on each other

● They call methods of other classes, extend other classes,...

● The main issue is the quality of this coupling

● Types of coupling:

○ Acceptable coupling ("good")

○ Poor coupling



Acceptable Coupling

40

● Class A uses a class B and:

○ B provides a very useful service for A

○ B has a stable interface

○ A only calls methods from B's interface



41

ParkingLot is coupled to Hashtable, but 
this coupling is acceptable

✅



Poor Coupling

42

● Class A uses a class B:

○ But class B's interface is unstable

○ Or the usage does not occur via B's interface



How can a class A depend on a class B without it 
being via B's interface?

43



44

"file1.db"

A

read



45

"file1.db"

A B

read write

❌❌



Poor Coupling

46

● Changes in B can easily impact A

● Example: B can change the format of the file or remove 
the data used by A

Also called evolutionary coupling 
(or logical coupling)

"file1.db"

A B

read write



How to solve this problem?
How to turn poor coupling into good coupling?

47



Refactoring poor into acceptable coupling

48

✅



Common recommendation in software design:

Maximize cohesion, minimize coupling

49

But be careful: minimize (or eliminate) primarily poor coupling



Summary

50

● Static (or structural) coupling:

○ In A's code, there is an explicit reference to B

○ Can be acceptable or poor coupling

● Evolutionary (or logical) coupling:

○ In A's code, there is no reference to B

○ However, changes in B can impact A

○ Poor coupling (always)



Exercises

51



1. Suppose you are responsible for implementing a system that will 
have ~100 KLOC. 

Hypothetically, propose a design for this implementation with the 
worst possible cohesion but, at the same time, the best possible 
coupling.

52



2. Consider the following code that performs operations on bank 
accounts. (a) Which design property is violated by this code; (b) 
How would you improve the design of this code?

53

var balance = [150, 10, 90]; // global

function deposit(account, value) {
  balance[account] += value;
}

function getBalance(account) {
  return balance[account];
}



3. Assume two classes A and B that:

● are implemented in different directories
● A has a reference in its code to B

Whenever a developer has, as part of a maintenance task, to modify 
both A and B he concludes by moving B to the same directory as A.

(a) By acting in this way, the developer is improving which design 
property (when measured across directories)?

(b) And which design property is affected negatively?

54



4. In general terms, which of the following designs is better? Justify 
(nodes = classes; edges = dependencies)

55 Source: Bertrand Meyer, Object-oriented software construction, 1997 (page 47) 



5. In general terms, which of the following designs is better? Justify 
(nodes = classes; edges = dependencies)

56 Source: The Pragmatic Programmer, 20th Anniversary Edition, Chapter 5

(a) (b)



57

6. Which of the following modules is better? Justify.

implementation

   interface

implementation

   interface

(A)

(B)

Inspired by concepts proposed in the book A Philosophy of 
Software Design. John Ousterhout

50 LOC

950 LOC

500 LOC

500 LOC



7. Next, we show two modularizations of a program that reads lines 
from the input, creates all the “circular shifts” of those lines, and prints 
the shifts in alphabetical order (details in the next slide). (a) Which 
modularization is better? (b) Which design property does it meet?

58 Modularization I

Modularization II

Source: https://www.riverandsoftware.com/p/criteria-to-be-used-in-modularisation-paper



Comments on the previous exercise

59

● This system, called KWIC (Keywords in Context), was used as an 
example in Parnas' software modularization paper (1972)

● Example of input and output (with sorted “circular shifts”)



8. Suppose two methods f and g. There is a temporal coupling 
between them when to call g we have to call f first.

(a) Give an acceptable and common example of temporal coupling 
(that is, give concrete names of methods f and g).

(b) Is the temporal coupling that exists in the following code 
acceptable or poor? If it's poor, suggest a refactoring to remove 
this type of coupling.

60

var circle = new Circle();
circle.setRadius(5);
circle.getArea(); 



9. The following figure illustrates the 
concerns that can appear when not 
following to which design property?

61 https://xkcd.com/2347



Design Principles

62



63

Guidelines Benefits (what we will gain by 
following the principle)



64 Source:  ThoughtWorks blog  (link)

https://www.thoughtworks.com/insights/blog/agile-engineering-practices/solid-principles-how-to-create-a-code-that-is-easy-to-extend-and-maintain-part-1


(1) Single Responsibility Principle (SRP)

65



Single Responsibility Principles

66

● Every class should have a single responsibility

● There should be only one reason to modify a class



67

Responsibility #1: compute dropout rate

❌



68

Responsibility #2: print dropout rate

❌



69

✅



70

Single responsibility: user interface

✅



71

Single responsibility: business logic 

✅



Advantages

72

● Business class (Course) can be used by more than one 
user interface class (Console, WebApp, MobileApp ...)

● Division of labor:

○ Interface concerns: frontend dev

○ Business concerns: backend dev



(2) Interface Segregation Principle (ISP)

73



Interface Segregation Principle

74

● Interfaces should be small, cohesive, and specific for each 
type of client

● Particular case of SRP, but focused on interfaces



75

❌



Implementation following ISP

76



77

✅



78

Common to all account

✅



79

Specific to SavingsAccounts

✅



80

Specific to SalaryAccounts

✅



(3) Dependency Inversion Principle (DIP)

81



Dependency Inversion

82

● We usually call this principle Prefer Interfaces to Classes

● Because it better conveys its idea



Example without using DIP

83

class RemoteControl {
  TVSamsung tv;
  ... 
}

class TVSamsung {
  ... 
}

What is the problem with 
this design related to 
coupling and extensibility?



Example using DIP

84

class RemoteControl {
  TVGeneric tv;
  ... 
}

interface TVGeneric {
  ... 
}

class TVSamsung implements TVGeneric {
  ... 
}



85

<<class>>
RemoteControl

<<class>>
TVSamsung

<<class>>
RemoteControl

<<interface>>
TVGeneric

<<class>>
TVSamsung

uses uses

implements

Without DIP With DIP

Advantage: generic remote 
control, for a generic TV

We can switch TVs, without 
having to change the code of 
the RemoteControl class



86

<<class>>
RemoteControl

<<interface>>
TVGeneric

<<class>>
TVSamsung

uses

implements

<<class>>
TVPhilips

<<class>>
TVSony

Design after some years



(4) Prefer Composition to Inheritance

87



Historical Context

88

● In the 80s, when OO became popular, developers started 
to abuse on the usage of inheritance

● They thought that inheritance would be a silver bullet, 
promote large-scale reuse, etc.



Inheritance: “is-a” relationship

89

class GasolineEngine extends Engine { 

   ... // inherits attributes and methods from engine

}



Composition: “has” relationship

90

● In UML, corresponds to an association

class Dashboard {
  RPMGauge rpm; // has an attribute
  ... 
} 



Prefer Composition to Inheritance ⇒ don't force 
the use of inheritance

91



(5) Demeter Principle

92



Demeter

93

● Demeter: research group from a US university

● Avoid long chains of method calls

● Example:
obj.getA().getB().getC().getD().doSomething();

pass-through objects



Reason

94

● Long call chains break encapsulation

● We don't want to go through A, B, C,… to get what we need

https://medium.com/@evan.hopkins.us/the-law-of-demeter-and-its-application-to-react-ab1e054f13c5

❌



95

✅

❌



Warning

96

● Demeter and other principles are recommendations

● We should not be radical and assume that method call 
chains are always prohibited

● Particula cases may exist and have a good justification



Acceptable example of method chaining

97

const numbers = [1, 2, 3, 4, 5];

const result = numbers

  .map(num => num * 2)

  .filter(num => num % 3 === 0)

  .reduce((acc, num) => acc + num, 0); 

console.log(result); // Output: 12 (2*3 + 4*3)

Methods of the 
language or its API

✅



(6) Open/Close Principle (OCP)

98



Open/Closed Principle

99

● Proposed by Bertrand Meyer

● A class should be closed for modifications, but open for 
extensions

1988



Explaining further

100

● Suppose you are going to implement a class

● Clients will want to use your class (obvious!)

● But they will also want to customize, configure, and 
extend it!

● You should anticipate and make such extensions possible

● Goal: avoid clients having to edit your class to customize it



How to make a class open to extensions, while 
keeping its code closed to modifications?

101

● Parameters

● Design patterns

● Inheritance

● Higher-order functions

● etc



Example

102

Sorts the list 



But now one user (developer) wants to sort the 
the list elements by their length (# of chars)

103



Is the sort method open (prepared) to this extension? 

But keeping its code closed, i.e., without having to change it

104



105

list of 
strings 

Object with a method to compare two strings. 
There's no free lunch: client has to implement this method



In summary: when implementing a class, think 
about extension points!

106



(7) Liskov Substitution Principle (LSP)

107



Liskov Substitution Principle

108

● The name is a reference to Prof. Barbara Liskov

● LSP defines best practices for using inheritance

● Specifically, for redefining methods in subclasses



First: let's understand the term substitution

109



110



111



112

Type A can be replaced by B1, B2, B3,...
As long as they are subclasses of A



Liskov Substitution Principle

113

● Substitutions from A to B can occur as long as B provides 
the same services as A

● For code that uses A, the substitution is imperceptible



Example that follows LSP

114

class RemoteControl {

   // range of 10 meters

}

class PremiumRemoteControl extends RemoteControl {

   // range of 20 meters

} 

✅



Example that does not follow LSP

115

class RemoteControl {

   // range of 10 meters

}

class BasicRemoteControl extends RemoteControl {

   // range of 5 meters

} 

❌



Exercises

116



117

1. Which design principle is violated by a call like the one shown 
below? What design change would you make in the Library class 
(the type of bib) to remove this violation?

bib.getCollection().getKnowledgeArea("SE").
    getBooks().find("SoftEngBook").getNumCopies();



118

2. Suppose the following class:

   class Table {
  ... 
  void print() {

// prints the table header
// prints each line of the table
// prints the table footer

  } 
  ...
}

This class does not follow the Open/Closed Principle, since in our 
system it is important to configure the header and footer messages. 
How would you change the implementation of this class to follow 
this principle?



119

3. Suppose a Calculator with a method that checks if a number 
between 0 and 10,000 is prime. Also suppose that a more efficient 
algorithm was implemented in a subclass FastCalculator. 
However, it only works with numbers between 1,000 and 9,000.

Which design principle is violated in this implementation? Justify.

class Calculator  {
   boolean isPrime(n) {

 // 0 <= n < 10000
   }
}

class FastCalculator extends Calculator {
  boolean isPrime(n) {

 // 1000 <= n < 9000
  }
}



120

4. Suppose you finished an outreach course offered by UFMG and want 
to receive your certificate. To do that, you had to:
● Send a mail to the coordinator, who asked you to send a mail to the 

department secretary
● Then, you sent a mail to the secretary, who asked you to send a 

mail to Center of Extension (CENEX)
● Then, you sent a mail to CENEX, who asked you to send a mail to 

Pro-Rectorate for Extension (PROEX)
● Then, you sent a mail to PROEX, who returned your certificate.

These steps illustrate a violation of which design principle? Besides 
sending several mails, what's another problem with this solution?



121

5. In Software Engineering, we sometimes use more complex 
solutions when this is not necessary. This problem is called 
overengineering or premature optimization.

Thus, describe a context in which the use of one of the design 
principles that we studied is as a premature optimization.

If you want, you can reuse examples from the previous slides.



End

122


