
Chapter 4 - Models

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Motivation

2

● There is a gap between these two worlds:

○ Requirements: what the system should do

○ Code: how the system implements the requirements

Software Models

3

● Goal: to fill this gap between requirements and code

● Document a solution to the problem defined by the
requirements

Models are common in other engineering fields

4

Thus, models were also proposed for software

5

Types of Software Models

6

● Formal: less common; will not be studied here

● Graphical: UML is the most common notation

UML: Unified Modeling Language

7

● Proposed in 1995 to unify other notations

Source: Wikipedia

UML & RUP

8

● Most common process at the time: RUP

● Detailed documentation and planning

● Code written after months of specification and modelling

CASE (Computer-Aided Software Engineering)
Tools

9

● Equivalent to CAD tools, but for Software Engineering

Main uses of UML

10

● As blueprint (detailed plans)

● As sketch (drafts, outlines)

In this course, we will study UML as Sketch

11

UML as Sketch

12

● Most common with agile methods

● To discuss or document parts of the code or design

● Lightweight and informal use of the notation

● The goal is not having a complete model (blueprint)

UML as Sketch

13

Q. Chen, J. Grundy, J. Hosking: SUMLOW: early design-stage sketching of UML diagrams on an E-whiteboard. Software Practice and Experience, 2008

UML sketches are useful in

Forward and in Reverse Engineering

14

Forward Engineering

15

● Sketches are used to discuss design alternatives

● Before any line of code is implemented

Reverse Engineering

16

● Sketches are used to explain an existing code

● Context: software maintenance and evolution

UML Diagrams

17

UML Diagrams

18

● Static Diagrams: model the structure of the code

● Dynamic Diagrams: model the execution of the code (the
behavior of the system)

UML Diagrams

19

In red, the diagrams that we will study

We will use the UML version described in this book

20

Class Diagrams

21

Generic format

22

Example

23

- : private
+: public

Association

24

Association

25

Multiplicity

26

Multiplicity

27

Other multiplicities

28

0..1

1

*

0..*

1..*

n

Bidirectional Associations

29

Inheritance

30

Dependencies (dashed arrows)

31

Relationship between classes, but not due to association or inheritance

Dependencies do not have multiplicity information

Exercises

32

33

1. Study and try to understand
this class diagram.

Source: Martin Fowler. UML Distilled

34

2. Model using class diagrams. The classes are in a different font.

● BankAccount has exactly one Customer. But a Customer can have
several BankAccount, with bidirectional navigation.

● SavingsAccount and SalaryAccount are subclasses of
BankAccount.

● The BankAccount code declares a local variable of type Database.

● An OrderItem refers to a single Order (without navigation). An Order
can have several OrderItem (with navigation).

● The Student class has attributes name, ID, course (all private); and
methods getCourse() and cancelEnrollment(), both public.

35

class HelloFrame {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello!");
 frame.setVisible(true);
 }
}

class HelloFrame extends JFrame {
 public HelloFrame() {
 super("Hello!");
 }
 public static void main(String[] args) {
 HelloFrame frame = new HelloFrame();
 frame.setVisible(true);
 }
}

3. Create class diagrams for the following programs:

(a)

(b)

Package Diagrams

36

Package Diagrams

37

Package Diagrams

38

Sequence Diagrams

39

Sequence Diagrams

40

● Behavioral or dynamic diagrams that model:

○ Some objects of a system

○ Methods they execute

Example 1

41

inactive

active

Example 2

42

Return arrows

43

● They can be omitted when:

○ The return is not important

○ The method does not return any value (void)

● Fowler: “Some people use returns for all calls, but I prefer
to use them only where they add information; otherwise,
they simply clutter things”.

Example 3

44

45

Example 4

This is not an interesting use
of sequence diagrams

Exercises

46

47

This sequence diagram should represent the method calls required to
calculate the total value of an Order, comprising multiple Order Lines,
each linked to a Product along with a quantity. However, why does the
diagram fail to accurately represent this process?

48

loop [for each line item]
Fixing the
diagram

Activity Diagrams

49

Activity Diagrams

50

● Behavioral or dynamic diagrams

● Model a business process or workflow

51

Assume that there is a token that moves
through the nodes of the diagram.

52

Initial node (creates a token)

53

Action (passes token from input to output flow)

54

Decision (decides to which output flow it will pass the token)

55

Merge (when token arrives at one of the inputs,
 passes it to the output)

56

Fork (token multipliers)

57

Join (token absorbers)

58
Final node (ends execution)

Exercises

59

1. Model in UML using a class diagram.

60

class Computer {
 ...
 private List<Keyboard> keybord;
 ...
}

class Keyboard {
 ...
}

Note: Keyboard does not have a reference to Computer.
However, in our system, we know that any Keyboard is always
connected to exactly one Computer.

2. What is the error in the following activity diagram? Change the diagram
to fix this error and to reflect the intention of the software designer.

61

End

62

