SOFTWARE
ENGINEERING Chapter 4 - Models

A Modern Approach ,
Prof. Marco Tulio Valente

\
g \ \] https://softengbook.org
[y=:= e)

MARCO TULIO VALENTE

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
1 long as attribution is given to the author.

https://softengbook.org

Motivation
e There is a gap between these two worlds:
o Requirements: what the system should do

o Code: how the system implements the requirements

Software Models

e Goal: to fill this gap between requirements and code

e Document a solution to the problem defined by the
requirements

Models are common in other engineering fields

Thus, models were also proposed for software

Types of Software Models

e Formal: less common: will not be studied here

e Graphical: UML is the most common notation

UML: Unified Modeling Language —

MODELING

e Proposed in 1995 to unify other notations LANGURGE .

State Charts

Harel 1987

Ada/Booch
Booch 0O0SA
1990 JV Wirfs-Brock Shlaer/Mellor
Booch '91

Methodologies

proliferate Booch '93 Gibson/Goldberg Coad/Yourdon
OODA
Martin/Odell

Booch
Rumbaugh
1995

Mature practice
Henderson—SeIIeri

Fusion OPEN/OML @@
v Unified Colemanu.a. Oty
tandardization
Accepted by 1SO Okt.2000 (UML 1.3 RUP_'__O e
Published Nov. 2000 | UML 1.4)
March 2003 | UML 1.5
2005 2005
Language 1 Exegkj"tfble
¢ 2007(_UML 2.1.2 A

proliferate : (SysML1.1) (BPMN 1.1) (xumL)

2008 (UML 2.2

Source: Wikipedia

UML & RUP

e Most common process at the time: RUP
e Detailed documentation and planning

e Code written after months of specification and modelling

CASE (Computer-Aided Software Engineering)
IO(Eauivalent to CAD tools, but for Software Engineering

i e SHEPESRSO)E g el - ArgoUiie Lj i;;l mﬁ
File Edit View Create Arrange Generation Critique Tools Help

GaeaBnhe: @@ EL: LA~ BB

N1 BB ovever—32EHS 1~ BB

a4y - Sipss dlss

E Package-centric

Order By Type, Name
Shape 1|

#-) Profile Configuration
=33 shapesmodel
+newOperaion() : void

Use Case Diagram 1 Zﬁ [P i
. !

(# T unattachedCollaboration
o double OneDimensional TwoDimensional

© int
o void +getlength() : double +getirea() : double
‘r {Unnamed Generalization)

? {Unnamed Generalization) 43 4& Point
? (Unnamed Generalization) Polygon 1% [int

? (Unnamed Generalization) +y iint
+Vertices

e

«» create =
TD transient
T volatile
— (Unnamed Association)
-3 onenimensinnal

By Priority L_y‘ 9 Items ‘ Presel S e
[Add Associations [< ToDo Item |
[C1 Add Instance Yar [Polygon has multiple base classes, but Java does not support A
[T Add Instance Var _ G multiple inheritance. You must use interfaces instead. H

«creater +Polygon() : void

[<]

[Add Instance Var

B = z This change is required before you can generate Java code.

[T Add Operations t

DAddCO”St'”cm'i To address this, use the "Next>" button, or manually (1)
- Low
[Rm——

(<]

lext >

Main uses of UML
e As blueprint (detailed plans)

e As sketch (drafts, outlines)

10

1

In this course, we will study UML as Sketch

UML as Sketch

e Most common with agile methods

e To discuss or document parts of the code or design
e Lightweight and informal use of the notation

e The goal is not having a complete model (blueprint)

12

UML as Sketch

Q. Chen, J. Grundy, J. Hosking: SUMLOW: early design-stage sketching of UML diagrams on an E-whiteboard. Software Practice and Experience, 2008

13

14

UML sketches are useful in

Forward and in Reverse Engineering

Forward Engineering

e Sketches are used to discuss design alternatives

e Before any line of code is implemented

15

Reverse Engineering

e Sketches are used to explain an existing code

e (Context: software maintenance and evolution

16

17

UML Diagrams

UML Diagrams

e Static Diagrams: model the structure of the code

e Dynamic Diagrams: model the execution of the code (the
behavior of the system)

18

UML Diagrams

In red, the diagrams that we will study

Diagram
I |
Behaviour Structure
Diagram Diagram
A A
T [TN |
Activity State Class Component Object
Diagram Machine Diagram Diagram Diagram
B i Diagram
v
]
Interaction Use Case Composite Deployment Package Profile
Diagram Diagram Structure Diagram Diagram Diagram
Diagram
JA\
e ——
[7T |
Communication Interac_tlon‘ Sequence) Timing
Diagram Overview \| Diagram Yy Diagram Notation: UML
Diagram g >

19

We will use the UML version described in this book

Covers through Yersion 2.0 OMG UML Standard

UML DISTILLED

THIRD EDITION

A BRIEF GUIDE TO THE STANDARD
OBJECT MODELING LANGUAGE

MARTIN FOWLER

20

21

Class Diagrams

Generic format

[class name]

[attributes]

[methods |

22

Example

Person

- firstName: String
- lastName: String
- phone: Phone

Phone

+ setPerson(firstName, lastName, phone)
+ toString(): String

- code: String
- number: String
- mobile: Boolean

- : private
+: public

23

+ setPhone(code, number, mobile)
+ toString(): String
+ isMobile(): Boolean

Association

class A {

private B b;

class B {

}

24

Association

25

Person

- firstName: String
- lastName: String

Phone

+ setPerson(firstName, lastName, phone)
+ toString(): String

- phone

- code: String
- number: String
- mobile: Boolean

+ setPhone(code, number, mobile)
+ toString(): String
+ isMobile(): Boolean

Multiplicity

Person

- firstName: String
- lastName: String

Phone

+ setPerson(firstName, lastName, phone)
+ toString(): String

26

- code: String
- number: String
- mobile: Boolean

+ setPhone(code, number, mobile)
+ toString(): String
+ isMobile(): Boolean

Multiplicity

27

Person

- firstName: String
- lastName: String

N

Phone

+ setPerson(firstName, lastName, phone)
+ toString(): String

class Person {
privathone;

class Phone {

- phone

- code: String
- number: String
- mobile: Boolean

+ setPhone(code, number, mobile)
+ toString(): String
+ isMobile(): Boolean

Other multiplicities

28

0..1
1
0.”
1.%

n

Bidirectional Associations

Phone
Person
code: String
firstName: String @ number: String
lastName: String i {| mobile: Boolean
< =
owner phone
setPerson(firstName, lastName, phone) setPhone(code, number, mobile)
toString(): String toString(): String
isMobile(): Boolean

class Person {
private Phone phone;

class Phone {
private Person[] owner;

Inheritance

30

Phone

Student

- course: String

+ setCourse(course)
+ getCourse(): String

- code: String
- number: String
- mobile: Boolean

+ setPhone(code, number, mobile)
+ toString(): String
+ isMobile(): Boolean

Person
- firstName: String * 0.1
- lastName: String i N
< ;g
- owner - phone
+ setPerson(firstName, lastName, phone)
+ toString(): String
Teacher

- degree: String

+ setDegree(degree)
+ getDegree(): String

Dependencies (dashed arrows)

Relationship between classes, but not due to association or inheritance

import java.util.Stack;

class MyClass {

private void methodX() { [:::::::i:>

new Stack();

ls

Dependencies do not have multiplicity information

31

MyClass

java.util.Stack

- methodX()

32

Exercises

Order

multiplicity

dateReceived: Date[0..1) "« Customer
isPrepaid: Boolean[1) 1 name (1]
number: s"m [1] .‘ address lo"1l
dispaich '-“b“ getCreditRating(): String
close
~
1
jeneralization
role ; name
attributes Corporate Customer Personal Customer
... | contactName creditCardNumber
> *| creditRating
lineltems v % {ordered} operations creditLimit
Order Line "l billForMonth(Integer)
remind()
quantity: Integer
price: Money *
* salesRep |, 0..1
DY,
i s’ Employee
Product

Source: Martin Fowler. UML Distilled

1. Study and try to understand
this class diagram.

2. Model using class diagrams. The classes are in a different font.

34

BankAccount has exactly one Customer. But a Customer can have
several BankAccount, with bidirectional navigation.

SavingsAccount and SalaryAccount are subclasses of
BankAccount.

The BankAccount code declares a local variable of type Database.

An OrderItem refers to a single Order (without navigation). An Order
can have several OrderItem (with navigation).

The Student class has attributes name, ID, course (all private); and
methods getCourse () and cancelEnrollment (), both public.

35

3. Create class diagrams for the following programs:

(@)

class HelloFrame {

public static void main(String[] args) {
JFrame frame = new JFrame ("Hello!");
frame.setVisible (true) ;
}
}
class HelloFrame extends JFrame {
public HelloFrame () {
super ("Hello!"™);
}
public static void main(String[] args) {
HelloFrame frame = new HelloFrame () ;

frame.setVisible (true) ;

36

Package Diagrams

Package Diagrams

[package name]

37

Package Diagrams

38

MobileView WebView
; :
v

BusinessLayer

é
[

Persistence

39

Sequence Diagrams

Sequence Diagrams

e Behavioral or dynamic diagrams that model:
o Some objects of a system

o Methods they execute

40

Example 1

al

f0

g0

bl

41

inactive

active

Example 2

class A {
void g() {
L
void £() {
g0
main () {

A a = new A();
a.f();

f0

42

‘|90

Return arrows

e They can be omitted when:
o The return is not important
o The method does not return any value (void)

e Fowler: “Some people use returns for all calls, but | prefer
to use them only where they add information; otherwise,
they simply clutter things”.

43

Example 3

database

update()

account

| setBalance

- - - -

deposit(amount)

atm

- - - --------

44

Example 4

45

fac(3)

This is not an interesting use
of sequence diagrams

46

Exercises

This sequence diagram should represent the method calls required to
calculate the total value of an Order, comprising multiple Order Lines,
each linked to a Product along with a quantity. However, why does the
diagram fail to accurately represent this process?

an Order an Order Line aProduct aCustomer

calculatePrice

found
message

47

Fixing the
diagram

48

found
message

an Order | | an Order Line I |

aProduct aCustomer
Ioop [for each line ltem]] |
getQuantity ’
% I‘ |
ot portcpon %
T S I |
" activation
QUEtchoDeEs I return | |
| il |
L | | I
calculateBasePrice | g
pralioadl BRUE | |
[| | |
message
calculaleonsooums I | l
—— | geDiscountinfo | J
I | l I
1 ' l

49

Activity Diagrams

Activity Diagrams
e Behavioral or dynamic diagrams

e Model a business process or workflow

50

51

[paypal] lelse]

A

Payment
via PayPal

Assume that there is a token that moves
through the nodes of the diagram.

Process
Purchase
Information

[paypal]

[else]

\

Process Payment
via PayPal

/

—

Y

Process

|

4
Payment
via Credit Card

.

Dispatch
Purchased
Products

Send Invoice

Y
=

52

JTL

Complete
Purchase

— Initial node (creates a token)

53

Process
Purchase

Information

[paypal] [else]

Y

Process Payment Process Payment
via PayPal via Credit Card

\J

<
<%

=Y

Dlspatch
Purchased

Products

m

JTL

Complete
Purchase

Action (passes token from input to output flow)

Process
Purchase
Information

[paypal] [else]

Decision (decides to which output flow it will pass the token)

Y \J

Process Payment Process Payment
via PayPal via Credit Card

Dispatch
Purchased Send Invoice
Products

Complete
Purchase

54

Process
Purchase
Information

[paypal] [else]
\J \J
| Process Payment \ Process Payment
via PayPal via Credit Card
=Y< Merge (when token arrives at one of the inputs,

passes it to the output)

Dispatch
Purchased Send Invoice
Products

Complete
Purchase

55

P

rocess

Purchase
Information

[paypal]

[else]

\J

Process Payment
via PayPal

L

.

Process Payment
via Credit Card

?4—

Dispatch
Purchased
Products

JTL

56

Complete
Purchase

Fork (token multipliers)

Process
Purchase
Information

[paypal] [else]
\
Process Payment Process Payment
via PayPal via Credit Card

>?<
.

Dispatch
Purchased Send Invoice
Products

+ Join (token absorbers)
Purchase

57

Process
Purchase
Information

[paypal] [else]
Y
Process Payment Process Payment
via PayPal via Credit Card

>?<
.

Send Invoice

'

Dispatch
Purchased
Products

Complete
Purchase

@® — Final node (ends execution)

58

59

Exercises

1. Model in UML using a class diagram.

class Computer { class Keyboard {

private List<Keyboard> keybord; }

60

Note: Keyboard does not have a reference to Computer.
However, in our system, we know that any Keyboard is always
connected to exactly one Computer.

2. What is the error in the following activity diagram? Change the diagram
to fix this error and to reflect the intention of the software designer.

[[action]]

[guard] P [else]
v

[[action] J [[action]]

61

End

