
Chapter 2 - Processes

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Traditional Engineering

2

● Civil, mechanical, electrical, aviation, automotive, etc

● Exists for thousands of years

● Two key characteristics:

○ Big Design Upfront (BDUF)

○ Sequential ⇒ Waterfall

Thus, SE also started using Waterfall

3

But Waterfall did not work with software

4

Software is different

5

● Software Engineering ≠ Traditional Engineering

● Software ≠ (cars, bridges, houses, airplanes, phones, etc)

● Software ≠ (physical products)

● Software is abstract and flexible

Challenge #1: Requirements

6

● Often, customers don't know what they want:

○ Feature space is “infinite” or hard to predict

○ World changes!

Challenge #1: Requirements

7

● It's not possible anymore to stay:

○ 1 year defining the requirements

○ 1 year designing the system

○ 1 year implementing the system

○ etc

● When the software becomes ready, it will be obsolete!

Challenge #2: Detailed Documentation

8

● Verbose and of limited use

● In practice, not used during the implementation phase

● Plan-and-document did not work with software

Agile Manifesto (2001)

9

Key idea: iterative development

10

Waterfall

Agile

Iterative Development

11

● Suppose a large and complex system

● What's the smallest feature increment we can deliver in 15
days and validate with users?

● Validation is very important

● Customers usually don't know what they want!

Other characteristics

12

● Less emphasis on documentation

● Less emphasis on big design upfront (BDUF)

● Customer involvement

● New programming practices: tests, refactoring, CI/CD, etc

Agile Methods

13

Agile Methods

14

● Give consistency to agile ideas

○ Define a process, even if lightweight

○ Workflow, events, roles, practices, principles, etc

Agile Methods

15

● Extreme Programming (XP)

● Scrum

● Kanban

Extreme Programming (XP)

16

Extreme Programming

17

Kent Beck

1999 2004

XP = Values + Principles + Practices

18

Values

19

● Communication

● Simplicity

● Feedback

● Courage

● Respect

● Quality of life (40-hour week)

Values or culture are fundamental in software!

20

XP = Values + Principles + Practices

21

Principles

22

● Economics

● Continuous Improvements

● Failures Happen

● Baby Steps

● Personal Responsibility

XP = Values + Principles + Practices

23

24

We will study in Scrum Tests and TDD: Chapter 8
CI: Chapter 10

Pair Programming

25

Study with Microsoft Engineers (2008)

26

● Advantages:

○ Less bugs

○ Code quality improvements

○ Knowledge dissemination

○ Peer learning

● Disadvantage:

○ Cost

Software Contracts

27

● Software can be developed:

○ Internally

○ Externally (outsource) ⇒ requires a contract

● Types of software contracts:

○ Closed Scope

○ Negotiated Scope ⇒ defended by XP

Closed Scope Contracts

28

● Scope ⇒ defined by the customer

● Price and deadline ⇒ defined by the software house

Negotiated Scope Contracts

29

● Payment per person/hour

● Scope defined in each iteration

● Contract renewed after each iteration

Negotiated Scope Contracts

30

● Requires maturity and customer involvement

● Advantages:

○ Fosters quality

○ Avoids delivering solely to avoid penalties

○ Clients can easily change suppliers

Exercises About XP

31

32

1. Why is XP a methodology aimed specifically at software
development projects?

Scrum

33

Scrum

34

● Proposed by Jeffrey Sutherland and Ken Schwaber

OOPSLA 1995

Scrum

35

● Scrum has many books, consulting, certifications, etc

Main event: Sprints

36

● Up to 1 month, usually 15 days

Sprint 1 Sprint 2 Sprint 3 Sprint 4 …

System

System
System

New Features

What is done in a sprint?

37

● Team implements user stories

● User stories ⇒ features

● Example from a Q&A Forum

A logged-in user should be able to post
questions. Since it’s a programming forum,
questions may incorporate code blocks, which
must be presented in a differentiated layout.

User stories are
written in cards

Who writes the stories?

38

● Product Owner (PO): mandatory role in Scrum

● Expert in the problem domain

Waterfall

39

Natural language
(could take years to get ready)

Stakeholders

Requirement
Analyst Devs

interviews

writes implemented by

Scrum

40

PO DevsStakeholders

● Durings the sprints, PO explains stories to devs

● We change from formal/written to informal/verbal specs

talks to talks to

Product Owner sits with developers and explains the
user stories to them

PO

Devs

What does a PO do?

42

● Write the user stories

● Explain the user stories to the devs

● Define the "acceptance tests" of the user stories

● Prioritize the user stories

Product Backlog

43

● List of user stories (and other important work items)

● Two characteristics:

○ Prioritized: top stories have higher priority

○ Dynamic: stories can come in and go...

Summarizing

44

● Iteration: sprint

● Roles: PO and devs

● Artifact: product backlog

Which stories will be implemented in the next sprint?

45

● Decision taken at the start of the sprint

● In a meeting called sprint planning:

○ PO proposes stories they'd like to see implemented

○ Devs decide if they have the velocity to implement them

Important

46

● In Scrum teams, everyone is at the same hierarchical level

● PO is not the manager of the Devs

● PO: expert in the system domain

● Devs: as the technical experts, they have the autonomy to
say they won't be able to implement everything the PO
wants in a single sprint

Sprint Planning

47

● 1st part: team selects the sprint's stories

● 2nd part: stories are broken down into tasks, which are
allocated to devs

Example: Q&A Forum

48

Product Backlog

49

Product Backlog

50

stories selected
for the next sprint

Sprint Backlog: tasks of the selected stories

51

● Install database and create initial tables

● Install Node.js and Express

● Create and test a route using Express

● Implement the question page in the frontend

● Implement the backend logic for creating questions

● Implement the answer page in the frontend

● Implement the backend logic for answering question

Sprint is ready to start!

52

Scrum Teams

53

● Small (size of a basketball to a football team)

● 5 to 11 members, including 1 PO and 1 Scrum Master

● Multidisciplinary: devs, designers, data scientists, etc

Scrum Master (SM)

54

● Expert that helps the team to follow Scrum

● “Remover” of non-technical impediments

○ Example: developers don't have good computers

● SM can also collect process metrics

● SM is not the manager of the team, but a servant leader

● SM can be part of more than one team

More Scrum Events

55

Daily Meetings (15 min)

56

● Each participant answers three
questions:

○ What I did yesterday

○ What I intend to do today

○ What obstacles I’m facing (if any)

● Goals: Improve communication & anticipate problems

Sprint ends with two events: Review and

Retrospective

57

Review

58

● Team shows the sprint's outcome to PO and stakeholders

● Implementation of each story can be:

○ Approved, partially approved or rejected

● In the last two cases, it goes back to the product backlog

Retrospective

59

● Last event of the sprint

● Team gathers to discuss two questions:

○ What went well in the sprint?

○ How can we improve?

● Goal: continuous improvements

● It's not for airing dirty laundry

Exercises

60

1. Why is Scrum usually defined as a framework?

For example, see the Scrum Guide definition: "Scrum is a
lightweight framework that helps people, teams and
organizations generate value through adaptive solutions
for complex problems."

2. Why is the Scrum framework defined as lightweight?

https://scrumguides.org/scrum-guide.html

More Scrum Concepts

61

Time-box

62

● All events have a well-defined duration

Done Criteria

63

● Criteria used to consider stories concluded

● Also called DoD (Definition of Done)

● Examples:

○ Unit tests with coverage ≥ 75%

○ Code review by another dev

○ Update documentation (if API changed)

○ Performance test (for certain stories)

Scrum Board

64

Example: Mozilla project (using GitHub Projects)

65

Story Points

66

Story Points

67

● Used to estimate the size of stories (empirical process)

● Help to define what will fit in a sprint

● Use is not mandatory in Scrum

Story points scale

68

● Fibonacci scale: 1, 2, 3, 5, 8, 13, …

● Team velocity: number of story points it can implement in
one sprint

Example

69

Defined by the
devs

Scrum in 1 slide

70fonte: https://www.scrum.org/resources/scrum-framework-reduce-risk-and-deliver-value-sooner

71

Interesting
comment on the
purpose of Scrum
events

https://twitter.com/i/web/status/1634572956746776577

https://twitter.com/i/web/status/1634572956746776577

Exercises about Scrum

72

73

1. What is the difference between the top and bottom stories
of the product backlog?

2. Suppose you intend to use Scrum to write a book:

a. What would be the items of the product backlog?

b. What would be the goal of the sprints?

c. What would be the items of the sprint backlog?

d. Does it make sense to have a sprint review?

e. Does it make sense to have a PO?

74

3. Suppose two teams, A and B, working on different
projects, hired by different companies:

● Both teams adopt 15-day sprints
● Both teams have 5 devs
● Team A’s velocity is 24 story points
● Team B’s velocity is 16 story points

Can we say that Team A is 50% more productive than B?
Justify.

75

4. Suppose a text editor with two stories:

● H1: Open file
● H2: Edit file

The PO has firmly prioritized H2 for one sprint and H1 for a
subsequent sprint.

● As a dev, what would you do in this case? Would you
follow the PO's priority?

● If yes, how would you implement the editing of a file
(H2) without first implementing its opening (H1)?

Kanban

76

Kanban

77

● Originated in the 1950s in Japan

● Toyota Production System

● Lean manufacturing, just-in-time production, etc

Kanban = "visual card"

78

Kanban in Software Development

79

Kanban vs Scrum

80

● Kanban is simpler

● No sprints

● It's not mandatory to have roles and events, including:

○ Scrum master

○ Daily Scrum, Retrospectives, Reviews

● Team defines roles and events

Kanban Board

81

"Large" columns in the board: kanban steps

1st sub-column 2nd sub-column

Time

We will explain shortly

Kanban is a Pull System

82

● Members:

a. Pull a task to work on

b. Complete this task and move it forward on the board

c. Go back to step (a)

83

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

 🗅

in progress

ready in progress

ready

in progress

done

time

84

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

 🗅

em espec.

ready in progress

ready

 in progress

done

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

in progress
 🗅

ready in progress

ready

 in progress

done

time

85

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

 🗅

em espec.

ready in progress

ready

 in progress

done

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

em espec.
 🗅

ready in progress

ready

 in progress

done

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

em espec.

ready
 🗅 🗅 🗅 🗅

in progress

ready

 in progress

done

time

86

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

em espec.

ready
 🗅 🗅 🗅 🗅

in progress

ready

 in progress

done

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

em espec.

ready
 🗅 🗅 🗅

in progress
🗅

ready

 in progress

done

Backlog Specification
WIP

Implementation
WIP

Code Review
 WIP |

em espec.

ready
 🗅 🗅🗅

in progress

ready
 🗅

 in progress

done

time

Example 2

87

Yesterday

88

Today

WIP Limits

89

Work in Progress (WIP) Limits

90

WIP Limits

91

● Maximum number of tasks per step

● Counting: in progress + ready

4 0+

Goals of WIP Limits

92

● Keep a sustainable workflow

● Prevent the team from become overloaded with work

○ WIP: agreement between the team and organization

○ Work capacity of a team

● Prevent work from being concentrated in one step

Common phrase in Kanban: Stop starting,
start finishing

93

Implementation is at the limit, thus it's time to review

94

Backlog Specification (2) Implementation (5) Revision (3)

 X
X

X
X
X

WIP of Specification Step

95

● Stories in progress + number of groups of tasks (rows on
the 2nd subcolumn)

● Tasks in the same row = resulting from the same story

0 +1 +1

WIP of Code Review: only tasks in progress

96

+1 Does not count for
WIP purposes

Final Comments on Kanban

97

● Simpler than Scrum

○ Recommened for mature teams

○ Perhaps, start with Scrum and then move to Kanban

● Evolutionary method:

○ We can start with what is being done

○ Understand the current flow and its bottlenecks

○ Then, propose small and gradual improvements

Exercises on Kanban

98

1. What is the error in the following Kanban board?

99

Backlog Specification (2) Implementation (5) Review (3)

 X
X
X

X
X
X

100

2. Is it possible to move a card back on a Kanban board? If
so, describe a situation in which this could occur.

3. Work overload is a common problem in software teams.
How can Kanban help to solve this problem?

4. Another problem in software teams is developers who rush
to deliver stories, but without the proper quality level. How
can Kanban help to solve this problem?

Non-Agile Processes

101

Iterative Methods

● Transition Waterfall (~1970) to Agile (~2000) was gradual

● Iterative or evolutionary methods were proposed, before
the dissemination of agile principles

● Examples:

○ Spiral Method (1986)

○ Rational Unified Process (RUP) (2003)

102

Spiral Model

103

Proposed by Barry Boehm

Iterations : 6 to 24 months (then,
longer than in XP or Scrum)

Rational Unified Process (RUP)

● Rational was a company, bought by IBM

● Key characteristic: plan-and-document, using UML and
CASE tools

104

CASE: Computer-Aided Software Engineering

105

Name comes from CAD systems
(used in traditional engineering)

Before concluding

106

● Processes are not used 100% as in the textbooks

● Experimentation is important!

Exercises

107

1. This slide groups agile principles in three areas: processes, technical
aspects, and cultural aspects. However, in each area there is a
characteristic not compatible with agility. Indicate such characteristic.

108

2. Suppose that your university plans to migrate to a new learning
management system. It is considering 3 strategies:

(a) develop the new system internally, using devs from the university.

(b) outsourcing the development to a software agency.

(c) buying or subscribing to an existing product on the market.

Assuming that the system in the three options will be developed using
Scrum, describe the most suitable Product Owner profile for each option.

109

4. When commenting on Scrum backlog items, we emphasized they are
user stories. However, stories are not the only possible items in a product
backlog. For instance, consider the following types of bugs:

(a) A bug detected during the implementation of a sprint's user story.

(b) A non-critical but complex bug reported by a user.

(c) A critical bug that is affecting several users.

How should a Scrum team handle these bugs?

110

5. This question is similar to the previous one but focusing on refactorings.
So, consider the following types of refactorings:

(a) A refactoring that can be performed in a few minutes.

(b) A complex refactoring that changes the system's architecture.

How should a Scrum team handle these two types of refactorings?

111

6. There are four important variables in software contracts: scope, time,
cost, and quality.

XP argues that it is impossible to fix these four variables via a contract, as
surprises will occur during the project.

Suppose a fixed scope contract. If a surprise occurs during the project,
which of these variables is likely to be sacrificed by the contracting
company to avoid penalties?

112

7. Suppose you are the tech lead of a team.

The developers are complaining that they are unable to use certain
modules because the documentation of their public interfaces is outdated.

Upon investigating the issue, you confirmed that developers often change
the modules' interfaces, but do not update the documentation.

Assuming the team uses Scrum, what measure would you take to prevent
this problem?

113

8. In SE, anti-patterns are solutions not recommended for a certain
problem. Thus, describe three anti-patterns for a Product Owner.

114

End

115

