
Chapter 10 - DevOps

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Our Situation in the Course

● We defined and used a process to implement a system

● The requirements have been defined and implemented

● The design and architecture have been defined

● Various tests have been implemented

● And many refactorings have been performed

2

Now we should complete the "last mile":
deploy the system, i.e., put it into production

3

In the past, deployment was a traumatic process

4

Two independent silos, with
very little communication

Ops = system administrators,
support, sysadmin, IT
personnel, etc

5

Central idea of DevOps: bringing Dev and Ops closer

6

"Imagine a world where product owners,
development, QA, IT Operations, and
Infosec work together, not just to aid
each other, but to guarantee the overall
success of the organization."

Objective: successful handover!
(deployment should start as soon as possible; be automated, etc)

7

Dev
Ops

Objective: end the blame game

Dev: the problem is not my code, but your server

Ops: the problem is not my server, but your code

8

DevOps

● It's not a title or role; but a set of principles and practices

● Name emerged ~2009

9

DevOps Principles

● Bring Devs and Ops closer, from the start of the project

● Follow an agile mindset also in the deployment phase

● Turn deployments into a non-event

● Deploy parts of a system every day

● Automate the deployment process

10

11

"Instead of starting deployments at midnight
on Friday and spending the weekend working
to complete them, deployments occur on any
business day when everyone is in the
company and without customers noticing
—except when they encounter new features
and bug fixes."

DevOps Practices

● Version Control

● Continuous Integration

● Branching Strategies

● Continuous Deployment

● Feature Flags

12

Version Control

13

Version Control

● Essential for collaborative development

● VCS: Source of Truth; stores the latest version

● Allows to recover previous versions

14

15

Centralized (example: svn, cvs)

16

Distributed
(example: git, mercurial)

Advantages of DVCS

● Commits are faster; devs can make commits more often

● There is a local VCS; thus, devs can work offline

● Supports alternative architectures: P2P, hierarchical, etc

17

Multirepos vs monorepo

18

Multirepo (more commom)

19

n repos

Monorepo (less common; bigtechs)

20

Example: GitHub
Multirepos:

● aserg-ufmg/system1

● aserg-ufmg/system2

● aserg-ufmg/system3

21

Monorepo:

● aserg-ufmg/systems

● Folders:

○ system1

○ system2

○ system3

22 https://research.google/pubs/pub45424/

Monorepos are mainly
used by large tech
companies

Advantages of Monorepos

● A single source of truth

● Promote visibility and code reuse

● The same version of a library is used in all systems

● Changes are always atomic (1 commit can change n systems)

● Facilitate large-scale refactorings

23

Disadvantage of Monorepos

● Require custom tools. Example: online IDEs

24

Details about git in the appendix

https://softengbook.org/chapterAp

25

https://softengbook.org/chapterAp

Continuous Integration

26

In the past: feature branches were very common

27

Result after 40 days: merge hell

28

If a task causes pain, it's best not to let it
accumulate, and instead, tackle it every day

29

Continuous Integration (CI)

● Proposed by XP

● As the name suggests, CI recommends integrating code
frequently

● But how often?

○ There is no consensus, but most authors recommend
at least once a day

30

Best practices when using CI

● Automated builds

● Automated tests

● Pair programming

31

CI Servers

32

Example:
GitHub Actions
Configuration File

on:

 push:

 branches: ["main"]

 pull_request:

 branches: ["main"]

jobs:

 build:

 runs-on: ubuntu-latest

 strategy:

 matrix:

 node-version: [14.x, 16.x, 18.x]
33

(cont.)
 steps:

 - uses: actions/checkout@v3

 - name: Use Node.js ${{ matrix.node-version }}

 uses: actions/setup-node@v3

 with:

 node-version: ${{ matrix.node-version }}

 cache: 'npm'

 - run: npm ci

 - run: npm run build --if-present

 - run: npm test

34

35

36

37

CI CI Server

Companies or projects that use it...

Important: do not confuse adopting CI with only using a
CI server

Branching Strategies

38

https://softengbook.org/articles/branching-strategies

https://softengbook.org/articles/branching-strategies

Branching Strategies

● How to organize and manage branches in a VCS

● Why, when, and how to create, merge, and delete branches

● Main strategies:

○ Git-flow

○ GitHubFlow

○ Trunk-based Development

39

Git-Flow

40

Git-flow

● Widely-used branch strategy

● Two permanent branches:

○ Main

○ Develop

41 Source: https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Permanent Branches

● Main: code that is ready for production; also called master
or trunk

● Develop: features that are implemented, but haven't
passed a final test, for example, by the QA team

42

Temporary Branches

● Feature branches

● Release branches

● Hotfix branches

43

Feature Branches

● Branches to implement a new feature

○ Origin: develop

○ Destination: merged back into develop

● Often, only exist in the dev's local repository

44

Feature Branches

45

Commands to create feature branches
git checkout -b feature-name develop % creates feature branch from develop

[commits to implement feature]

git checkout develop % switches to develop

git merge --no-ff feature-name % merges feature-name into develop
 % no-ff: no fast-forwarding (see next
slide)

git branch -d feature-name % removes feature branch

git push origin develop % pushes develop to remote repo

46

git merge: with and
without fast-forward
,

47

Release Branches

● Used to prepare a new release to be approved by customers

● Origin: develop

● Destination:

○ merge into main (with the new release tag)

○ also merge into develop (with bug fixes)

48

Release Branch (last branch in the figure)

49

release tag

Commands to create release branches
git checkout -b release-1.0 develop % creates release branch from develop

[release commits]

git checkout main % switch to main
git merge --no-ff release-1.0 % merges into main
git tag -a 1.0 % adds tag to main

git checkout develop % switch to develop
git merge --no-ff release-1.0 % merges into develop

git branch -d release-1.0 % removes release branch

git push origin develop % pushes develop to remote repo (github)
git push origin main % pushes main to remote repo (github)

50

Hotfix Branches

● Branches to fix critical bugs detected in production

● Origin: main (via the tag where the bug was reported)

● Destination:

○ merge into master (with new tag)

○ also merge into develop

51

Hotfix Branches (last branch in the figure)

52

Commands to create hotfix branches
git checkout -b hotfix-1.2.1 main % creates hotfix branch from main

[commits do hotfix]

git checkout main % switches to main
git merge --no-ff hotfix-1.2.1 % merges hotfix branch into main
git tag -a 1.2.1 % adds tag to main

git checkout develop % switches to develop
git merge --no-ff hotfix-1.2.1 % merges hotfix branch into develop

git branch -d hotfix-1.2.1 % deletes hotfix branch

git push origin develop % pushes develop to remote repo (github)
git push origin master % pushes main to remote repo (github)

53

Git-flow: Summary

54

Feature ⇒ Develop ⇒ Release ⇒
⇒ Main

Git-flow: Usage and disadvantages
● Recommended when:

○ Several customers with different versions

○ Manual testing and QA teams

○ Releases require customer approval

● Disadvantages:

○ Tendency to have long-lived branches and more conflicts

○ And longer customer feedback cycles

55

GitHub Flow

56

GitHub Flow

● Common flow when using GitHub

● Simplified Git-Flow:

○ No develop, release, and hotfix branches

○ Only feature and main branches

● But with support for Pull Requests (PR)

57

GitHub Flow Steps

● Dev creates a "feature branch" in their local repo

● Implements a feature

● Pushes the branch to GitHub

● Goes to GitHub and opens a Pull Request (PR)

○ PR: request for someone to review the branch

● Reviewer (other dev) reviews and merges the PR into main

58

Pull Request

59

GitHub Flow: Usage and Disadvantage

● When to use:

○ Systems with only one version in production

○ Example: Web systems

● Disadvantage:

○ PRs may take a long time to be reviewed

60

Trunk-based Development (TBD)

61

Trunk-based Development (TBD)

● Since merges can cause conflicts, TBD advocates:

○ No develop branches

○ All implementation occurs directly on the main branch

● Main branch: also called trunk or master

62

63
Source: https://trunkbaseddevelopment.com

https://trunkbaseddevelopment.com

"Almost all development occurs at the HEAD of the repository,
not on branches. This helps identify integration problems early
and minimizes the amount of merging work needed. It also
makes it much easier and faster to push out security fixes."

"All front-end engineers work on a single stable branch of the
code, which also promotes rapid development, since no effort is
spent on merging long-lived branches into the trunk."

64

Continuous Deployment

65

Continuous Deployment (CD)

● CI: integrate code frequently

● CD: integrated code goes immediately into production

● Goal: experiment and feedback!

66

How to prevent my partial implementations
from reaching customers?

67

Feature Flags (also called feature toggles)

68

While the feature is
being developed!

When the code is ready: enable the flag

69

true;

70

Md Tajmilur Rahman et al. Feature
toggles: practitioner practices and a
case study. MSR 2016.

Branch by Abstraction

● Technique to make changes in a system:

○ Keeping the current implementation running

○ Without creating branches

● Idea:

○ Simulate a branch in the code

○ Through abstractions and duplication of code

71

Example: changing the implementation of a function f

1. Rename f to f_old

2. Create the following new function (or abstraction):

 void f() {

 f_old(); // used by the rest of the code
 // f_new(); // used during the implementation/test of the change

 }

3. In the local repo, implement and test f_new, switching comments

4. When ready, delete f_old and f; and rename f_new to f

72

Exercises

73

1. Assume the following function:
String highlight_text(String text, String word) {

 // “text” is a text in markdown

 // search all instances of “word” in “text”

 // convert word to bold (**word**, in markdown)

}

74

Assume that you are working in your local repo on a code that calls
“highlight_text”. Describe a change (push) made to this function, by
another dev, that:

(a) causes a compilation error in your code (after a pull)?

(b) causes a logic error in your code (after a pull)?

2. Define (and distinguish) the following practices:
● Continuous integration
● Continuous delivery
● Continuous deployment

75

76

Continuous
Integration

(example: daily)

Continuous
Deployment

(automatically) Production
Server

Continuous
Integration

(example: daily)

Continuous Delivery
(deployment must be
manually approved) Production

Server

3. Suppose you were hired by a company that produces printers and
became responsible for defining the DevOps practices adopted in the
implementation of the printers' drivers.
Which of the following practices would you recommend in this case:
continuous deployment or continuous delivery? Justify.

77

4. In a browser like Chrome, is it better to use Continuous Delivery
or Continuous Deployment?

5. What is the "best" type of system for using Continuous
Deployment? Justify.

78

6. Languages like C support conditional compilation directives like
#ifdef and #endif. What is the difference between these directives
and feature flags?

79

#include <iostream>

#ifdef _WIN32
 #include <windows.h>
 void clearScreen() {
 system("cls");
 }
#else
 #include <unistd.h>
 void clearScreen() {
 system("clear");
 }
#endif

int main() {
 std::cout << "This program will
 clear the screen in 3 secs" <<
 std::endl;
 sleep(3);
 clearScreen();
 std::cout << "Screen cleared!"
}

7. In the context of TBD, feature flags are used to disable
implementations that are not ready to go to production. However, in
other contexts, feature flags can be used to enable or disable
general features. Give an example of a system and some of features
that can be turned on or off.

8. What's the difference between an A/B Test and a canary release?

80

In summary, feature flags are used to:

1. Control the release of untested or incompleted features
when using Continuous Deployment (our focus in Ch. 10)

2. Enable/disable optional features

3. Conduct A/B testing

4. Implement canary releases

81

9. Complete the following table assuming a company that uses
git-flow.

82

Type of Branch Origin Branch Destination Branch(es)

Feature

Release

Hotfix

10. Assume you are responsible for implementing a change in a
function f.

For this, you decided to use a branch by abstraction strategy. Thus,
you created a copy of f, called f_new. Still assume that f calls a
function g.

(a) If a bug is fixed in g, by another dev, which git command should
you use to get the new version of g.

(b) Now suppose your change in f requires a change in g as well.
What should you do in this case?

83

End

84

