
Chapter 10 - DevOps

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

Our situation in the course

● We defined and used a software process

● The requirements have been defined and implemented

● The design and architecture have been established

● Various tests have been developed and implemented

● We have completed many refactorings

2

Now we should complete the "last mile": To
deploy the system, i.e., put it into production

3

In the past, deployment was a challenging and
high-risk process

4

Two independent silos, with
very little communication

Ops = system administrators,
support, sysadmin, IT
personnel, etc

5

Central idea of DevOps: Bridging the gap between
Dev and Ops

6

"Imagine a world where product owners,
development, QA, IT Operations, and
Infosec work together, not just to aid
each other, but to guarantee the overall
success of the organization."

Primary objective: successful handover!
(deployment should start as soon as possible; be fully automated, etc)

7

Dev

Ops

Objective: eliminate the "blame culture"

Dev: "The problem is not in my code, but in your server"

Ops: "The problem is not in my server, but in your code"

8

DevOps

● It's not a title or role; but a set of principles and practices

● Name emerged ~2009

9

DevOps Principles

● Foster collaboration between Devs and Ops teams

● Apply an agile mindset throughout the deployment phase

● Transform deployments into a routine operation

● Deploy software every day

● Automate the deployment process

10

11

"Instead of starting deployments at midnight
on Friday and spending the weekend working
to complete them, deployments occur on any
business day when everyone is in the
company and without customers noticing
—except when they encounter new features
and bug fixes."

DevOps Practices

● Version Control

● Continuous Integration

● Branching Strategies

● Continuous Deployment

● Feature Flags

12

Version Control

13

Version Control Systems (VCS)

● Essential for collaborative development

● They serve as the Source of Truth; maintaining the latest
version

● Enables teams to recover previous versions

14

15

Centralized (example: svn, cvs)

16

Distributed
(example: git, mercurial)

Advantages of DVCS

● Commits are faster; enabling devs to commit more often

● Each dev has a local repository, allowing offline work

● Supports alternative architectures: P2P, hierarchical, etc

17

Multirepos vs Monorepo

18

Multirepo (more commom)

19

n repos

Monorepo (less common; bigtechs)

20

Example: GitHub
Multirepos:

● my-org/system1

● my-org/system2

● my-org/system3

21

Monorepo:

● my-org/systems

● Folders:

○ system1

○ system2

○ system3

22 https://research.google/pubs/pub45424/

Monorepos are
primarily adopted by
large tech companies

Advantages of Monorepos

● Provides a single source of truth

● Enables visibility and code reuse

● Ensures the same version of a library across all systems

● Supports atomic changes (1 commit can modify n systems)

● Enables large-scale refactorings

23

Disadvantage of Monorepos

● Requires specialized tools, such as online IDEs and build
systems

24

For more information about Git, please refer
to the appendix

https://softengbook.org/chapterAp

25

https://softengbook.org/chapterAp

Continuous Integration

26

In the past: feature branches were very common

27

Result after 40 days: merge hell

28

If a task causes pain, it's best not to let it
accumulate; instead, tackle it daily

29

Continuous Integration (CI)

● First introduced in XP

● CI emphasizes frequent code integration into the main
branch

● How often? Most authors recommend at least daily

30

Key practices for effective CI implementation

● Automated builds

● Automated tests

● Pair programming

31

CI Servers

32

33

CI CI Server

Companies or projects that use...

Adopting CI is more than merely using a CI server

Branching Strategies

34

https://softengbook.org/articles/branching-strategies

https://softengbook.org/articles/branching-strategies

Branching Strategies

● How to organize and manage branches in a VCS

● Best practices for creating, merging, and deleting branches

● Common strategies:

○ Git-flow

○ GitHubFlow

○ Trunk-based Development

35

Git-Flow

36

Git-flow

● A widely-used branch strategy

● Two permanent branches:

○ master/main

○ develop

37 Source: https://nvie.com/posts/a-successful-git-branching-model/

https://nvie.com/posts/a-successful-git-branching-model/

Permanent Branches

● Main/master/trunk: production-ready code

● Develop: integration branch for completed features
pending QA approval

38

Temporary Branches

● Feature branches

● Release branches

● Hotfix branches

39

Feature Branches

● Used for implementing new features

● Branch flow:

○ Created from: develop

○ Merges into: develop

● Typically exists only in the developer's local repository

40

Feature Branches

41

Commands for creating feature branches
git checkout -b feature-name develop # creates feature branch from develop

[commits to implement feature]

git checkout develop # returns to develop

git merge --no-ff feature-name # merges feature-name into develop
 # no-ff: no fast-forwarding (see next
slide)

git branch -d feature-name # deletes feature branch

git push origin develop # Updates remote repo

42

git merge: with and
without fast-forward
,

43

Release Branches

● Used to prepare a new release for customer approval

● Origin: develop

● Destination:

○ Merge into main (with the new release tag)

○ Merge into develop (with bug fixes)

44

Release Branch (last branch in the figure)

45

release tag

Commands for creating release branches
git checkout -b release-1.0 develop # creates release branch from develop

[release commits]

git checkout main # switch to main
git merge --no-ff release-1.0 # merges into main
git tag -a 1.0 # adds tag to main

git checkout develop # switch to develop
git merge --no-ff release-1.0 # merges into develop

git branch -d release-1.0 # removes release branch

git push origin develop # pushes develop to remote repo
git push origin main # pushes main to remote repo

46

Hotfix Branches

● Used to fix critical bugs detected in production

● Origin: main (via the tag where the bug was reported)

● Destination:

○ Merge into main (with new version tag)

○ Merge into develop

47

Hotfix Branches (last branch in the figure)

48

Commands for creating hotfix branches
git checkout -b hotfix-1.2.1 main # creates hotfix branch from main

[hotfix commits]

git checkout main # switches to main
git merge --no-ff hotfix-1.2.1 # merges hotfix branch into main
git tag -a 1.2.1 # adds tag to main

git checkout develop # switches to develop
git merge --no-ff hotfix-1.2.1 # merges hotfix branch into develop

git branch -d hotfix-1.2.1 # deletes hotfix branch

git push origin develop # pushes develop to remote repo
git push origin main # pushes main to remote repo

49

Git-flow: Summary

50

Feature ⇒ Develop ⇒ Release ⇒
⇒ Main

Git-flow: Usage and disadvantages
● Recommended when:

○ You have several customers with different versions

○ You maintain manual testing and QA teams

○ Releases need customer approval

● Disadvantages:

○ Can lead to long-lived branches and increased conflicts

○ Results in longer customer feedback cycles

51

Exercises

1. Can we implement Continuous Integration (CI) with Git-flow?
Explain your reasoning.

2. How can CI servers be integrated into Git-flow projects?
Which branches should be monitored by CI servers?

52

GitHub Flow

53

GitHub Flow

● A simplified workflow common in GitHub projects

● Key characteristics:

○ Only feature and main branches

○ Pull Requests (PRs)

○ No develop, release, and hotfix branches

54

GitHub Flow Steps

1. Dev creates a feature branch in their local repository

2. Dev implements the feature

3. Dev pushes the branch to GitHub

4. Dev creates a PR on GitHub

5. PR enables code review by team members

6. Reviewer examines changes and merges the PR into main

55

Pull Request

56

GitHub Flow: Usage and Disadvantage

● When to use: systems with only one version in production,
such as Web systems

● Challenges: PRs can take a long time to be reviewed

57

Trunk-based Development (TBD)

58

Trunk-based Development (TBD)

● Development should occur directly on the main (or trunk)

● No develop branches

● Goal: minimize merge conflicts

59

60
Source: https://trunkbaseddevelopment.com

https://trunkbaseddevelopment.com

"Almost all development occurs at the HEAD of the repository,
not on branches. This helps identify integration problems early
and minimizes the amount of merging work needed. It also
makes it much easier and faster to push out security fixes."

"All front-end engineers work on a single stable branch of the
code, which also promotes rapid development, since no effort is
spent on merging long-lived branches into the trunk."

61

Continuous Deployment

62

Continuous Deployment (CD)

● CI: integrate code frequently

● CD: integrated code goes immediately into production

● Goal: rapid experimentation and feedback!

63

How to keep partial implementations from reaching
customers?

64

Feature Flags (also called feature toggles)

65

While the feature is
being developed!

When the code is complete: enable the flag

66

true;

67

Md Tajmilur Rahman et al. Feature
toggles: practitioner practices and a
case study. MSR 2016.

Exercises

68

1. Assume the following function:
String highlight_text(String text, String word) {

 // “text” is a text in markdown

 // search all instances of “word” in “text”

 // convert word to bold (**word**, in markdown)

}

69

Assume that you are working in your local repo on a code that calls
“highlight_text”. Describe a change (push) made to this function, by
another developer, that:

(a) causes a compilation error in your code (after a pull)?

(b) causes a logic error in your code (after a pull)?

2. Define (and distinguish) the following practices:
● Continuous Integration
● Continuous Delivery
● Continuous Deployment

70

71

Continuous
Integration

(example: daily)

Continuous
Deployment

(automatically) Production
Server

Continuous
Integration

(example: daily)

Continuous Delivery
(deployment must be
manually approved) Production

Server

3. Suppose you were hired by a company that produces printers and
became responsible for defining the DevOps practices adopted in the
implementation of the printers' drivers.
Which of the following practices would you recommend in this case:
continuous deployment or continuous delivery? Provide a brief
justification.

72

4. In a browser like Chrome, which practice is more suitable:
Continuous Delivery or Deployment? Provide a brief justification.

5. What is the best type of system for using Continuous
Deployment? Justify.

73

6. Languages like C support conditional compilation directives like
#ifdef and #endif. What are the key differences between these
directives and feature flags?

74

#include <iostream>

#ifdef _WIN32
 #include <windows.h>
 void clearScreen() {
 system("cls");
 }
#else
 #include <unistd.h>
 void clearScreen() {
 system("clear");
 }
#endif

int main() {
 std::cout << "This program will
 clear the screen in 3 secs" <<
 std::endl;
 sleep(3);
 clearScreen();
 std::cout << "Screen cleared!"
}

To compile:

g++ -D__unix__ -o clear_screen clear_screen.cpp

7. In the context of TBD, feature flags are used to disable
implementations that are not ready for production. However, in other
contexts, feature flags can be used to enable or disable general
features. Provide an example of a system and describe some of the
features that can be turned on or off.

8. What are the key differences between an A/B Test and a canary
release?

75

In summary, feature flags are used to:

1. Control the release of untested or incomplete features
when using Continuous Deployment (our focus in Ch. 10)

2. Enable/disable optional features

3. Conduct A/B testing

4. Implement canary releases

76

9. Complete this table assuming a company that uses git-flow.

77

Type of Branch Origin Branch Destination Branch(es)

Feature

Release

Hotfix

10. During July 2024, a failure in one of CrowdStrike's
attack-protection systems caused "blue screens" on over
eight million Windows machines worldwide. Discuss which
DevOps practice could have been used to prevent this
incident.

.

78

79

CrowdStrike
Code

Files that
describe the

security rules that
are checked

Not Update Updated

Gradual Deployment Deployment to all
users

End

80

