
Chapter 1 - Introduction

Prof. Marco Tulio Valente

https://softengbook.org

1

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

NATO Conference (Germany, 1968)

● First time the term Software Engineering was used

Working Conference on Software Engineering

2

Comment from a participant

"Certain systems are presenting demands beyond our
capabilities... We are having difficulties with large applications."

3

What is studied in SE?

4

1. Requirements Engineering
2. Software Design
3. Software Construction
4. Software Testing
5. Software Maintenance
6. Configuration Management
7. Project Management

What is studied in SE?

5

8. Software Processes
9. Software Models

10. Software Quality
11. Professional Practice
12. Economic Aspects

In this class

● We will give an overview of these areas

● To provide a broad understanding of what is SE

● In the rest of the course, we will study these topics in detail

6

But first a disclaimer

7

8Frederick Brooks. No Silver Bullet - Essence and Accidents of Software Engineering. IEEE Computer, 1987.
Image from: https://twitter.com/zeljko_obren/status/909014656802574336

Reason: Essential Difficulties

Complexity

Conformity

Ease of Changes

Invisibility

9

They make SE different from
other engineering fields

Now, let's return to some SWEBOK areas

10

Requirements

● What a system must do to meet clients needs

● Including quality of service attributes

11

Functional vs Non-Functional Requirements

● Functional:

○ What a system should do

○ Features or services

● Non-functional:

○ How a system should operate

○ Under what constraints and with what quality of service

12

Examples of NFR (for a banking app)

● Performance: provide account balance in 5 seconds

● Availability: be online 99.99% of the time

● Capacity: store data for 1M customers

● Fault tolerance: continue operating if a datacenter goes down

● Security: encrypt data exchanges with branches

13

Examples of NFR

● Privacy: do not store user locations

● Interoperability: integrate with Central Bank systems

● Maintainability: bugs should be fixed in 24 hours

● Usability: version for cellphones and tablets

14

15

Pre-1970 cartoon; origin unknown
Source: Bertrand Meyer. Object Success, 1995.

Testing

● Checks if a program has the expected results when
executed with some test cases

● Two types:

○ Manual

○ Automated

16

Famous Software Failure:
Explosion of Ariane 5 (1996)

17

30 seconds later

18

rocket + satellite: US$ 500M

Credits: ESA 1996

Explosion Investigation

● Caused by a software failure

● Conversion 64-bit float ⇒16-bit integer

● Overflow: float didn't fit into 16 bits

● This overflow has never happened before

19

Test Pyramid

20

Types of Automated Tests

21

Unit Integration End-to-End

Maintenance

● Corrective

● Preventive

● Adaptive

● Evolutionary

● Refactoring

22

23

Refactoring in one slide

Legacy Systems

● Old systems, using old technologies (language, OS, DB)

● Maintenance is costly and risky

● But legacy ≠ irrelevant

24

COBOL lives…

● ~200 billion LOC in COBOL worldwide

● Most in banking systems

○ 95% of ATM transactions are in COBOL

○ Single European bank has 250 MLOC in COBOL

25
Source: Vadim Zaytsev's talk at SLE 2020 (https://youtu.be/sSkIUTdfDjs)

Cobol Example
PROGRAM-ID. CONDITIONALS.

DATA DIVISION.
 WORKING-STORAGE SECTION.
 *> setting up places to store values
 *> no values set yet
 01 NUM1 PIC 9(9).
 01 NUM2 PIC 9(9).
 01 NUM3 PIC 9(5).
 01 NUM4 PIC 9(6).
 *> create a positive and a negative
 *> number to check
 01 NEG-NUM PIC S9(9) VALUE -1234.
 *> create variables for testing classes
 01 CLASS1 PIC X(9) VALUE 'ABCD '.
 *> create statements that can be fed
 *> into a cobol conditional
 01 CHECK-VAL PIC 9(3).
 88 PASS VALUES ARE 041 THRU 100.
 88 FAIL VALUES ARE 000 THRU 40.

26

IDENTIFICATION DIVISION.
PROCEDURE DIVISION.
 *> set 25 into num1 and num3
 *> set 15 into num2 and num4
 MOVE 25 TO NUM1 NUM3.
 MOVE 15 TO NUM2 NUM4.

 *> comparing two numbers and checking for equality
 IF NUM1 > NUM2 THEN
 DISPLAY 'IN LOOP 1 - IF BLOCK'
 IF NUM3 = NUM4 THEN
 DISPLAY 'IN LOOP 2 - IF BLOCK'
 ELSE
 DISPLAY 'IN LOOP 2 - ELSE BLOCK'
 END-IF
 ELSE
 DISPLAY 'IN LOOP 1 -ELSE BLOCK'
 END-IF

 *> use a custom pre-defined condition
 *> which checks CHECK-VAL
 MOVE 65 TO CHECK-VAL.
 IF PASS
 DISPLAY 'PASSED WITH 'CHECK-VAL' MARKS.'.
 IF FAIL
 DISPLAY 'FAILED WITH 'CHECK-VAL' MARKS.'.

 *> a switch statment
 EVALUATE TRUE
 WHEN NUM1 < 2
 DISPLAY 'NUM1 LESS THAN 2'
 WHEN NUM1 < 19
 DISPLAY 'NUM1 LESS THAN 19'
 WHEN NUM1 < 1000
 DISPLAY 'NUM1 LESS THAN 1000'
 END-EVALUATE.
STOP RUN.Source: GitHub gist

https://gist.githubusercontent.com/yvan/81067209bfc284e67f963b44f87fd3c6/raw/996d0c27b1abf268de43219017ed88e1acd0e25e/first_cobol_conditionals.cbl

Processes

● Activities whe should follow to build a software system

● Two types:

○ Waterfall

○ Agile

27

Waterfall Model

28

Problems with Waterfall

● Requirements often change

○ Complete requirements specification takes time

○ When it's finished, the world changed

● Moreover, customers usually don't know what they want

● Documentation is verbose and quickly becomes outdated

29

Agile Manifesto (2001)
● Meeting of 17 software engineers in Utah

● New model: incremental and iterative

30
https://siamchamnankit.co.th/history-some-pictures-and-pdfs-of-the-agile-manifesto-meeting-on-2001-a33c40bcc2b

Major impact on the software industry (and beyond)

31

May 2020

Ethical Aspects

32

● Devs are questioning the use of the software they create

https://www.bloomberg.com/news/articles/2018-06-21/google-engineers-refused-to-build-security-tool-to-win-military-contracts

https://www.bloomberg.com/news/articles/2018-06-21/google-engineers-refused-to-build-security-tool-to-win-military-contracts

Types of Software Systems

33

The ABC of Software Engineering

● Classification proposed by Bertrand Meyer

● Three types of software:

○ Type C (Casual)

○ Type B (Business)

○ Type A (Acute)

34https://bertrandmeyer.com/2013/03/25/the-abc-of-software-engineering/

Casual Systems (Type C)

● Very common

● Small systems, not very important

● Can have bugs; sometimes, they are temporary systems

● Implemented by 1-2 devs

● They don't benefit much from what we'll study

● The risk is over-engineering

35

Business Systems (Type B)

● Vey important to an organization

● Systems that benefit from what we will study in this course

● Risk: if we do not use SE techniques, they may become a
liability, rather than an asset for organizations

36

Acute Systems (Type A)
● Software where nothing can go wrong, as the cost is

immense, in terms of human lives and/or $$$

● Mission-critical systems

37

Subway Aviation Medicine

Acute Systems
● May require certifications

● They are beyond the scope
of our course

38

Exercises

39

1. Studies show that maintenance and evolution costs can reach
80% or more of a software’s total costs over its lifecycle.
Explain why this value is so high.

2. Suppose that you have to build a bridge. Describe how a
project for building this bridge would be assuming:

a. Waterfall-based project

b. Agile-based project

3. Refactoring is a code transformation that preserves behavior.
What is the meaning of the expression preserve behavior?
What restriction does it impose on refactoring activities?

40

4. In testing, there is this famous quote, by Edsger W. Dijkstra:

"tests show the presence of bugs, but not their absence."

Why are tests unable to show the absence of bugs?

41

5. In software project management, there is an empirical law, called
Brooks' Law, which says that:

"adding new devs to a project that is late, makes it even later."

Why does this fact tend to be true?

42

43

6. This chart illustrates how the costs of changes vary according
to the development phase they occur for a given application.
(a) Which development method would you recommend for this
system, and why? (b) Give examples of systems that have a
similar change cost curve.

7. In 2015, it was discovered that millions of cars manufactured by a
major automobile company emitted pollutants within legal
standards only during laboratory tests. Under normal usage
conditions, the cars released higher levels of pollutants to enhance
performance. Thus, the code possibly included a decision
command like the following one (merely illustrative). What would
you do if your manager asks you to write an if like the one above?

44

End

45

