SOFTWARE
ENGINEERING Chapter 1 - Introduction

A Modern Approach
Prof. Marco Tulio Valente

it
[/== R ik https://softengbook.org

MARCO TULIO VALENTE

CC-BY: This license enables anyone to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the author.

https://softengbook.org

NATO Conference (Germany, 1968)

e First time the term Software Engineering was used

Working Conference on Software Engineering

Comment from a participant

"Certain systems are presenting demands beyond our
capabilities... We are having difficulties with large applications."

What is studied in SE?

N o O s~ b~

Requirements Engineering
Software Design

Software Construction
Software Testing

Software Maintenance
Configuration Management
Project Management

¥ SWEBOK’
V3.0

Guide to the Software
Engineering Body of Knowledge

What is studied in SE?

8. Software Processes
9. Software Models

10. Software Quality
11. Professional Practice
12. Economic Aspects

i SWEBOK'
V3.0

Guide to the Software
Engineering Body of Knowledge

In this class

e We will give an overview of these areas
e To provide a broad understanding of what is SE

e |n the rest of the course, we will study these topics in detail

But first a disclaimer

APRIL 1987

PUTER

%Hiluer
Bullet

Fred Brooks

on

Avoiding Horrors
in the Software
\ Engineering
Process

110 Siluer Bulle

Essence and Accidents of
Software Engineering

Frederick P. Brooks, Jr.

University of North Carolina at Chapel Hill

Fashioning complex
conceptual constructs
is the essence;
accidental tasks arise
in representing the
constructs in
language. Past
progress has so
reduced the accidental
tasks that future
progress now depends
upon addressing the
essence.

f all the monsters that fill the
O nightmares of our folklore, none

terrify more than werewolves,
because they transform unexpectedly
from the familiar into horrors, For these,
one seeks bullets of silver that can magic-
ally lay them to rest,

The familiar software project, at least as
seen by the nontechnical manager, has
something of this character; it is usually in-
nocent and straightforward, but is capable
of becoming a monster of missed sched-
ules, blown budgets, and flawed products.
So we hear desperate cries for a silver
bullet—something to make software costs
drop as rapidly as computer hardware
costs do.

But, as we look to the horizon of a
decade hence, we see no silver bullet.
There is no single development, in either

h y or in h i
that by itself promises even one order-of-
magnitude improvement in productivity,
in reliability, in simplicity. In this article, |
shall try to show why, by examining both
the nature of the software problem and the

throughs—and indeed, 1 believe such to be
inconsistent with the nature of soft-
ware—many encouraging innovations are
under way. A disciplined, consistent effort
to develop, propagate, and exploit these
innovations should indeed yield an order-
of-magnitude improvement. There is no
royal road, but there is a road

The first step toward the management
of disease was replacement of demon
theories and humours theories by the germ
theory. That very step, the beginning of
hope, in itself dashed all hopes of magical
solutions. It told workers that progress
would be made stepwise, at great effort,
and that a persistent, unremitting care
would have to be paid to a discipline of
cleanliness. So it is with software engi-
neering today.

Does it have to be
hard?—Essential
difficulties

Frederick Brooks. No Silver Bullet - Essence and Accidents of Software Engineering. IEEE Computer, 1987.
Image from: https://twitter.com/zeljko_obren/status/909014656802574336

Reason: Essential Difficulties

Complexity

Conformity They make SE different from
other engineering fields

Ease of Changes

Invisibility

Now, let's return to some SWEBOK areas

Requirements

e \What a system must do to meet clients needs

e Including quality of service attributes

11

Functional vs Non-Functional Requirements

e Functional:
o What a system should do
o Features or services
e Non-functional:
o How a system should operate

o Under what constraints and with what quality of service

12

Examples of NFR (for a banking app)

e Performance: provide account balance in 5 seconds

e Availability: be online 99.99% of the time

e Capacity: store data for 1M customers

e Fault tolerance: continue operating if a datacenter goes down

e Security: encrypt data exchanges with branches

13

Examples of NFR

e Privacy: do not store user locations
e Interoperability: integrate with Central Bank systems
e Maintainability: bugs should be fixed in 24 hours

e Usability: version for cellphones and tablets

14

As the Project Leader
defined it

As Management
reguested it

As Systems
As Programmung

designed it
T, developed it

........

What the user wanted.

P

Pre-1970 cartoon; origin unknown
Source: Bertrand Meyer. Object Success, 1995.

15

Testing

e Checks if a program has the expected results when
executed with some test cases

e T[wo types:
o Manual

o Automated

16

Famous Software Failure:
Explosion of Ariane 5 (1996)

17

30 seconds later
rocket + satellite: US$ 500M

Credits: ESA 1996

18

Explosion Investigation

e Caused by a software failure
e Conversion 64-bit float = 16-bit integer
e Overflow: float didn't fit into 16 bits

e This overflow has never happened before

19

Test Pyramid

End-to-End
Tests

/ Integration Tests \

Unit Tests

Slower
More expensive

Faster
Cheaper

20

Types of Automated Tests

Lol
A

Unit Integration End-to-End

Maintenance

e Corrective
e Preventive
e Adaptive

e Evolutionary

e Refactoring

22

Refactoring in one slide

Before

23

Legacy Systems

e OlId systems, using old technologies (language, OS, DB)
e Maintenance is costly and risky

e Butlegacy # irrelevant

24

COBOL lives...
e ~200 billion LOC in COBOL worldwide

e Most in banking systems
o 95% of ATM transactions are in COBOL
o Single European bank has 250 MLOC in COBOL

Source: Vadim Zaytsev's talk at SLE 2020 (https://youtu.be/sSkIUTdfDjs)

25

IDENTIFICATION DIVISION.
CO bOI Example PROCEDURE DIVISION.
*> set 25 into numl and num3
*> set 15 into num2 and numé

PROGRAM-ID. CONDITIONALS. MOVE 25 TO NUM1 NUM3.
MOVE 15 TO NUM2 NUM4.

DATA DIVISION. *> comparing two numbers and checking for equality
WORKING-STORAGE SECTION. IF NUML > NUM2 THEN
DISPLAY 'IN LOOP 1 - IF BLOCK'
IF NUM3 = NUM4 THEN
*> no values set yet DISPLAY 'IN LOOP 2 - IF BLOCK'
01 NUM1 PIC 9(9). ELSE
DISPLAY 'IN LOOP 2 - ELSE BLOCK'
01 NUM2 PIC 9(9) ND-1p
01 NUM3 PIC 9(5). ELSE
01 NUM4 PIC 9(6) DISPLAY 'IN LOOP 1 -ELSE BLOCK'

T : END-IF
*> create a positive and a negative

*> setting up places to store values

*> number to check *> use a custom pre-defined condition

01 NEG-NUM PIC S9(9) VALUE -1234. *> which checks CHECK-VAL
MOVE 65 TO CHECK-VAL.

*> create variables for testing classes IF PASS

01 CLASS1 PIC X(9) VALUE 'ABCD '. DISPLAY 'PASSED WITH 'CHECK-VAL' MARKS.'

*> create statements that can be fed IF FAIL

: o DISPLAY 'FAILED WITH 'CHECK-VAL' MARKS.'.
*> into a cobol conditional

01 CHECK-VAL PIC 9(3). *> a switch statment
88 PASS VALUES ARE 041 THRU 100. EVALUATE TRUE

88 FAIL VALUES ARE 000 THRU 40. (=i PRI PR
DISPLAY 'NUM1 LESS THAN 2'

WHEN NUM1 < 19
DISPLAY 'NUM1l LESS THAN 19'
WHEN NUM1 < 1000
DISPLAY 'NUM1 LESS THAN 1000'
END-EVALUATE.

Source: GitHub gist STOP RUN.

https://gist.githubusercontent.com/yvan/81067209bfc284e67f963b44f87fd3c6/raw/996d0c27b1abf268de43219017ed88e1acd0e25e/first_cobol_conditionals.cbl

Processes

e Activities whe should follow to build a software system
e Two types:

o Waterfall
o Agile

27

Waterfall Model

Requirements

Analysis

Design

Y

Implementation

Tests

Deployment

28

Problems with Waterfall

e Requirements often change
o Complete requirements specification takes time
o When it's finished, the world changed
e Moreover, customers usually don't know what they want

e Documentation is verbose and quickly becomes outdated

29

Agile Manifesto (2001)

e Meeting of 17 software engineers in Utah

e New model: incremental and iterative

https://siamchamnankit.co.th/history-some-pictures-and-pdfs-of-the-agile-manifesto-meeting-on-2001-a33c40bcc2b

30

Major impact on the software industry (and beyond)

TheAgile
Executlve

valance
efficienc

May 2020

31

Ethical Aspects

e Devs are questioning the use of the software they create

Cybersecurity

Google Engineers Refused to Build
Security Tool to Win Military Contracts

A work boycott from the Group of Nine is yet another hurdle to the company’s
efforts to compete for sensitive government work.

https://www.bloomberg.com/news/articles/2018-06-21/google-engineers-refused-to-build-security-tool-to-win-military-contracts

32

https://www.bloomberg.com/news/articles/2018-06-21/google-engineers-refused-to-build-security-tool-to-win-military-contracts

Types of Software Systems

33

The ABC of Software Engineering

e C(lassification proposed by Bertrand Meyer
e Three types of software:

o Type C (Casual)

o Type B (Business)

o Type A (Acute)

https://bertrandmeyer.com/2013/03/25/the-abc-of-software-engineering/ 34

Casual Systems (Type C)

e \ery common

e Small systems, not very important

e (Can have bugs; sometimes, they are temporary systems
e |Implemented by 1-2 devs

e They don't benefit much from what we'll study

e The risk is over-engineering

35

Business Systems (Type B)

e \ey important to an organization
e Systems that benefit from what we will study in this course

e Risk: if we do not use SE techniques, they may become a
liability, rather than an asset for organizations

36

Acute Systems (Type A)

e Software where nothing can go wrong, as the cost is
immense, in terms of human lives and/or $$$

e Mission-critical systems

Aviation Medicine

37

Acute Systems

e May require certifications

e They are beyond the scope
of our course

Document Title
DO-178C - Software Considerations in Airborne Systems and
Equipment Certification

Description

This document provides recommendations for the production of
software for airborne systems and equipment that performs its
intended function with a level of confidence in safety that complies
with airworthiness requirements. Compliance with the objectives of
DO-178C s the primary means of obtaining approval of software
used in civil aviation products.

Document Number DO-178C
Format Hard Copy
Committee SC-205
Issue Date 12/13/2011

38

Exercises

39

1. Studies show that maintenance and evolution costs can reach
80% or more of a software’s total costs over its lifecycle.
Explain why this value is so high.

2. Suppose that you have to build a bridge. Describe how a
project for building this bridge would be assuming:

a. Waterfall-based project
b. Agile-based project

3. Refactoring is a code transformation that preserves behavior.
What is the meaning of the expression preserve behavior?
What restriction does it impose on refactoring activities?

40

In testing, there is this famous quote, by Edsger W. Dijkstra:
"tests show the presence of bugs, but not their absence."

Why are tests unable to show the absence of bugs?

41

In software project management, there is an empirical law, called
Brooks' Law, which says that:

"adding new devs to a project that is late, makes it even later."
Why does this fact tend to be true?

w""

THE
MYTHICAL

MAN-MONTH

FREDERICK P. BROOKS, J F

42

6. This chart illustrates how the costs of changes vary according
to the development phase they occur for a given application.
(a) Which development method would you recommend for this
system, and why? (b) Give examples of systems that have a
similar change cost curve.

Cost of
Changes

Requirements Design Implementation Production

43

/.

In 2015, it was discovered that millions of cars manufactured by a
major automobile company emitted pollutants within legal
standards only during laboratory tests. Under normal usage
conditions, the cars released higher levels of pollutants to enhance
performance. Thus, the code possibly included a decision
command like the following one (merely illustrative). What would
you do if your manager asks you to write an if like the one above?

if "car being tested in a laboratory”
"comply with emission standards”

else

"exceed emission standards”

44

End

